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Helly’s original theorem

Helly’s original theorem (1923)

Let F be a finite family of convex sets in Rd .
If every G ⊆ F with |G | ≤ d + 1 has non-empty intersection,
then F has non-empty intersection.

Small-sized certificate of empty intersection
If F has empty intersection, some subfamily of size ≤ d + 1 has
empty intersection.



Intersection patterns and simplicial complexes

Intersection patterns

Let F be a (finite) family of subsets of an arbitrary ground set.
The nerve N(F ) of F is {G ⊆ F |

⋂
G 6= ∅}.

It is a simplicial complex (stable under taking subsets / a.k.a. a
monotone hypergraph / a monotone set system).

F N(F )



Helly-type theorems

Definition
Missing face F ′ of N(F ):{

F ′ 6∈ N(F ),

∀F ′′ ( F ′, F ′′ ∈ N(F ). and missing

Definition
F is k-Helly if all the missing faces of N(F ) have size ≤ k .

⇒ ⇔

Small-sized certificate of empty intersection

If F has empty intersection,
then some subfamily of F of size ≤ k has empty intersection.
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In this talk. . .

Results
A new topological Helly-type theorem for families of
disconnected geometric objects
based on a generalization of the nerve theorem from
topological combinatorics
with applications to geometric transversal theory.



Warm-Up



Topological Helly theorem

Wanted!

Every “convex-like” family in Rd is
(d + 1)-Helly.

Wrong statement −→
Replace “convex-like” with
“contractible” (“without hole”; e.g.,

homeomorphic to a convex set).

Definition
A (finite) family F of (open) geometric objects is acyclic (a.k.a. a good

cover) if: For every G ⊆ F ,
⋂

G is either empty or contractible.

Topological Helly theorem

Every acyclic family in Rd is (d + 1)-Helly [Helly, 1930].
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Nerve theorem

Nerves as topological spaces

Vertices in general position in Rd , d large;
attach segments, triangles, tetrahedra, . . .

F N(F )

Nerve theorem
If F is acyclic, then

⋃
F ' N(F ): they have “holes” in the same

dimensions [Borsuk, 1948].

Proof(s)

Follows “trivially” from algebraic topology arguments;
more “hands-on” (homotopic) combinatorial proof [Björner, 2003].
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Topological interlude: “holes”

Holes in a topological space S
Formally, S has a k-hole if the kth dimensional reduced homology of S is
nonzero: dim H̃k(S ,Q) > 0.

Intuitively, S has a k-hole if some k-dimensional “closed part”
of S is the boundary of no (k + 1)-dimensional subset of S .
Examples:

S has a 0-hole if it is not connected;
S has a 1-hole if it contains a closed curve that is not the
boundary of a surface in S ;
S has a 2-hole if it contains a “bubble”. . .

Contractible means “without hole”.



Nerve theorem ⇒ topological Helly theorem

F N(F )

Let F be an acyclic family in Rd .
Let G be a missing face of N(F ).
N(G ) has a (|G | − 2)-hole.
On the other hand, we have N(G ) '

⋃
G . . .

and
⋃

G ⊆ Rd , so
⋃

G has no hole in dimension ≥ d .
So |G | − 2 < d , i.e., |G | ≤ d + 1.
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Results



Generalized version

Definition

A family F of sets in Rd is r -acyclic if ∀G ⊆ F ,
⋂

G is the disjoint
union of at most r contractible sets.

Topological Helly theorem

Let F be a 1-acyclic family in Rd .
Then F is (d + 1)-Helly.

Remarks
The value (d + 1)r cannot be lowered;
strengthens a result by [Kalai and Meshulam, 2008] on r -families of
acyclic families (also [Amenta, 1996]);
r -family F of a “ground” family G : The intersection of a subfamily of F is the
disjoint union of at most r elements in G .

[Matoušek, 1997] had proved that F is k-Helly for some (large) k .
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Comparison with other results

convex sets in Rd

[Helly, 1923]

d + 1

acyclic families in Rd

[Helly, 1930]

d + 1

r -family of convex sets in Rd

[Amenta, 1996]

(d + 1)r

r -family of an acyclic
family in Rd

[Kalai and Meshulam, 2008]

(d + 1)r

topological
condition
[Matoušek, 1997]

no explicit bound

r -family of a non-additive
family G closed under

⋂
[Eckhoff and Nischke, 2009]

r × h(G )

r -acyclic family
[CdV, G, and G]

(d + 1)r



Application to geometric transversal theory

Let C1, . . . ,Cn be disjoint convex sets
in Rd .
For each i , let Fi be the set of lines
meeting Ci .
Let F := {F1, . . . ,Fn}.

In which cases is F k-Helly?
Central question in geometric transversal theory.

Shape k-Helly for k = . . .
previous bound our bound

parallelotopes in Rd (d ≥ 2) 2d−1(2d − 1) [Santaló, 1940] 2d−1(2d − 1)
disjoint translates of a convex in R2 5 [Tverberg, 1989] 10

disjoint unit balls in Rd d = 2 5 [Danzer, 1957] 12
d = 3 11 [Cheong et al., 2008] 15
d = 4 15 [Cheong et al., 2008] 20
d = 5 19 [Cheong et al., 2008] 20
d ≥ 6 4d − 1 [Cheong et al., 2008] 4d − 2
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Why does our result apply?

New topological Helly-type theorem

Let F be a family of sets in Rd such that ∀G ⊆ F ,⋂
G is the disjoint union of at most r contractible

sets. Then F is ((d + 1)r)-Helly.

Idea: Apply the main result in the space of lines of Rd

Good: Often, if G ⊆ F , each connected component of
⋂

G
corresponds to a geometric permutation of the objects Ci .
Bad: The space of lines in Rd is a (2d − 2)-manifold.
→ Extension to arbitrary topological spaces
(d=dimension of vanishing homology of open sets).

Bad: Some components of
⋂

G are not contractible.
→ For small G , allow

⋂
G to have holes in low dimension.
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Sketch of Proof



Main new object: the multinerve

F M(F ) N(F )

π

The multinerve M(F ) of a family F of sets is a blown-up version of
the nerve N(F ): (roughly,) order the connected components of the
intersecting subfamilies by inclusion.

M(F ) is a more general simplicial poset [Björner, Stanley, . . . ];
every “lower interval” is a simplex.
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Multinerve theorem

F M(F ) N(F )

π

Multinerve theorem

Let F be a family of sets in Rd such that
∀G ⊆ F ,

⋂
G is the disjoint union of finitely many contractible sets.

Then M(F ) and
⋃

F have holes in the same dimensions.

Proof
Spectral sequences with Leray’s acyclic cover theorem;
alternatively, variation on [Björner, 2003].



New topological Helly theorem: proof sketch

We know that M(F ) has no hole in dimension ≥ d ;
we want to infer that N(F ) has no hole in dimension
≥ (d + 1)r − 1.

Theorem [Kalai and Meshulam, 2008]

Let M and N be simplicial complexes.
Let π : M → N be simplicial, size-preserving, at most r -to-one,
and onto.
Assume (roughly) that M has no hole in dim. ≥ d .
Assume that some suitably defined subcomplexes of sd(M) have no hole in dim. ≥ d .

Then N has no hole in dimension ≥ (d + 1)r − 1.
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New topological Helly theorem: proof sketch

We know that M(F ) has no hole in dimension ≥ d ;
we want to infer that N(F ) has no hole in dimension
≥ (d + 1)r − 1.

Theorem (generalizing [Kalai and Meshulam, 2008])

Let M be a simplicial poset and N a simplicial complex.
Let π : M → N be simplicial, size-preserving, at most r -to-one,
and onto.
Assume (roughly) that M has no hole in dim. ≥ d .
Assume that some suitably defined subcomplexes of sd(M) have no hole in dim. ≥ d .
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Tools
Algebraic topology (spectral sequences, multiple point set, etc.).



Proof sketch (continued)

σ

C

σ

Definition
If σ is a simplex of a simplicial poset X , then barylinkX (σ) is the
subcomplex of sdX that is the order complex of (σ, ·] in X .

Lemma

For any acyclic family F in Rd , barylinkM(F )(σ) has no hole in
dimension ≥ d .



Proof sketch (end)

Multiple point set
Mk :=

{
m1, . . . ,mk ∈ |M|k

∣∣ π(m1) = . . . = π(mk)
}
.

Consequence of [Goryunov and Mond, 1993]

Some spectral sequence (E •p,q) converging to H∗(N) satisfies:
If, for all q, for all p ≤ r − 1, and for all p + q ≥ (d + 1)r − 1, we
have Hq(Mp+1) = 0,
then E 1

p,q = 0 (and therefore Hk(N) = 0 for all k ≥ (d + 1)r − 1).

Rephrasing [Kalai and Meshulam, 2008]

Some spectral sequence (E ′•p,q) converging to H∗(Mp+1) satisfies

E ′1p,q ∼=
⊕

(σ2,...,σk )

∈ Sp

⊕
i1,...,ik≥0

i1+...+ik=p+q

Hi1

(
M

[
k⋂

i=2

σ̃i

])
⊗

k⊗
j=2

H̃ij−1 (barylinkM(σj))

Thus in our setting Hq(Mp+1) = 0. . .



Conclusion



Fractional Helly-type theorems

Definition
F is k-fractional Helly if the following holds: If “many” k-tuples
of F have non-empty intersection, then there exists a “large”
subfamily of F that has non-empty intersection.

More precisely: If a fraction x of the k-tuples have non empty
intersection, then a fraction f (x) of the elements in F have
non-empty intersection, where f (x) tends to one as x tends to one.

More theorems for free!
Using [Alon, Kalai, Matoušek, Meshulam, 2002], we obtain immediately such
fractional Helly theorems for r -acyclic families.



Conclusion: Get rid of topology?

Another proof without topology?
[Eckhoff and Nischke, 2009] reproves [Kalai and Meshulam, 2008] in a purely
combinatorial way (“generalized pigeonhole principle”).
Can we use that proof technique instead?

Core of their proof
Let M, N be simplicial complexes.
Let π : M → N be simplicial, size-preserving, at most r -to-one,
and onto.
If N contains all the strict subfamilies of a set S of size k + 1,
then π−1(2S) contains all the subfamilies of size ≤

⌊k
r

⌋
of a

set of size k + 1.

Can we allow M to be a simplicial poset? Under which conditions?





Most general results

Common hypotheses
Let Γ be a locally arcwise connected topological space.
Let F be a finite family of open subsets of Γ that is r -acyclic
with slack d : for every subfamily G ⊆ F , G 6= ∅,

if |G | ≥ d , then G intersects in at most r connected
components.
for every i ≥ max{1, d − |G |}, we have H̃i (

⋂
G ,Q) = 0.

General multinerve theorem

For every i ≥ d , H̃i (M(F ),Q) ' H̃i (
⋃

F ,Q).

General topological Helly theorem
Assume moreover that every open set of Γ has trivial homology in
dimension ≥ d . Then F is ((d + 1)r)-Helly.


