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Limit shapes: a simple example
1-d random walk:

It is well known that under the rescaling:

 1-d Brownian motion    (random process)

Conditioned 1-d random walk  

Now, instead, let us rescale:    

and send      with          fixed (scaling limit)

  straight line    (non-random  curve)



    

Limit shape of Young diagrams 

 Plancherel measure    
[Vershik-Kerov'77][Logan-Shepp'77]

  Uniform measure
[Temperley'52][Vershik'77]

  



  Rhombi tilings of an hexagon
(a.k.a. Boxed plane partitions)  [Cohn-Larsen-Propp'98]

Height function models and 2-d limit shapes



  http://faculty.uml.edu/jpropp

Domino tiling of an Aztec diamond

[Jockush-Propp-Shor '95]

The Arctic Circle



  

And further... ...till considering more generic domains

Plane partitions Skewed plane partitions Rhombi-tilings of generic
domain of triangular lattice

[Cerf-Kenyon'01] [Okounkov-Reshetikhin'05] [Kenyon-Okounkov'05]
[Dobrushin-Kotecky-Shlosman'01]

Actually all these models are avatars of the same model,  `dimer covering of regular
planar bipartite lattices',  a.k.a. `discrete free fermions',  a.k.a  `non-intersecting paths'.
A beautiful unified theory has been provided for regular planar bipartite graphs with
deep implications in algebraic geometry and algebraic combinatorics.

[Kenyon, Sheffield, Okounkov, '03-'05]



  

Alternating Sign Matrices
[Mills-Robbins-Rumsey'82]

An  ASM is an  by  matrix such that:

• entries 
• non-zero entries alternate in sign
• Sum of entries along each row and column is 

ASMs generalize permutation matrices.

The seven ASMs of order :

ASMs enumeration:

[Mills-Robbins-Rumsey'82] [Zeilberger'95] [Kuperberg'95]



  

Weighted enumeration:        

where  is the number of   in matrix , and   is the set of ASMs of order 

Nice round formulae for      [MRR'83][Propp et al'95][Kuperberg'96]

Why?   Relation with classical Orthogonal Polynomials       [FC-Pronko'2005]

NB:  also enumerates  `domino tilings of the Aztec Diamond'.    [Propp et al'95]



  

Weighted enumeration:        

where  is the number of   in matrix , and   is the set of ASMs of order 

Nice round formulae for      [MRR'83][Propp et al'95][Kuperberg'96]

Why?   Relation with classical Orthogonal Polynomials       [FC-Pronko'2005]

NB:  also enumerates  `domino tilings of the Aztec Diamond'.    [Propp et al'95]

Refined enumeration, according to the position  of the only    of the first row

 

Again, nice round formulae for    [MRR'83][Zeilberger'96][FC-Pronko'2005]

 



  

Doubly......Triply......Quadruply refined enumerations

[Stroganov'04][Di Francesco 05][FC-Pronko-05][Behrend'13][Ayyer-Romik'13]...

but nothing more because...
...a matrix has only 4 edges!

In particular, 
no enumeration with conditioning of entries away from the first/last rows/columns

Many interconnections and developments:
• combinatorial objects  :  plane partitions, domino tilings, monotone triangles, heigth

function matrices, fully packed loops...
• exactly solvable models of statistical mechanics  : six-vertex model, dense loop

model, supersymmetric quantum spin chains...
• Razumov-Stroganov correspondence, Cantini-Sportiello theorem, ...



  

0 0 1 0 0
0 1 0 0 0
1 0 −1 1 0
0 0 1 −1 1
0 0 0 1 0

Alternating Sign Matrices and the six-vertex model
[MRR'82] [Kuperberg'96]

0 0 1 0 0
0 1 0 0 0
1 0 −1 1 0
0 0 1 −1 1
0 0 0 1 0

0 0 1 0 0
0 1 0 0 0
1 0 −1 1 0
0 0 1 −1 1
0 0 0 1 0

c

b

a



  

0 0 1 0 0
0 1 0 0 0
1 0 −1 1 0
0 0 1 −1 1
0 0 0 1 0

Alternating Sign Matrices and the six-vertex model
[MRR'82] [Kuperberg'96]

0 0 1 0 0
0 1 0 0 0
1 0 −1 1 0
0 0 1 −1 1
0 0 0 1 0

0 0 1 0 0
0 1 0 0 0
1 0 −1 1 0
0 0 1 −1 1
0 0 0 1 0

c

b

a

Note the peculiar boundary conditions (domain wall b.c.)

ASM enumeration:    

weighted enumeration:

and, in general, two independent parameters.



  

-1

+1

0

● Just a single 1 in first and last rows and columns
● Non-zeroe entries stay away from corners

From now on, ASM pictures produced with an improved version of a C code kindly 
provided by Ben Wieland,and  based on `Coupling from the past' algorithm 

[Propp-Wilson'96] 

A typical 10 x 10 ASM



  

A typical 100 x 100 ASM



  

A typical 500 x 500 ASM



  

Summary and program

● We assume that ASMs have a definite Arctic curve as .

● To determine it we first need to define and evaluate a suitable `correlation
function', i.e, a sufficiently refined ASM-enumeration,  able  to recognize the
presence of non-zero entries in the matrices, away from the boundaries.

● Next, we shall evaluate its asymptotic behaviour in some `scaling limit' for
, obtaining an analitic expression for the Arctic Curve.

● The results generalizes to arbitrary  weights.

●Finally we provide an alternative derivation of the above results, that can be
extended to  ASMs of generic shape, that we call  “Alternating Sign Arrays”
(ASAs).



  

Emptiness Formation Probability (EFP)   [FC-Pronko'08]

NB:  and  are horizontal and vertical coordinates, respectively.

A  ASM with only
 entries in the top-left

rectangle of size 
and 

s

r



  

Emptiness Formation Probability (EFP)   [FC-Pronko'08]

NB:  and  are horizontal and vertical coordinates, respectively.

A  ASM with only
 entries in the top-left

rectangle of size 
and 

r

s



  

It is easily seen that
•  for small , i.e. near the top left corner;

•  for large , deeply inside the matrix;

If the Arctic Curve exists, in the scaling limit: 

then   should have a stepwise behaviour,  from  outside the Arctic Curve, to
 inside it, with the unit jump occurring in correspondence of the Arctic Curve.

● Of course only the top-left  `quarter'  of the Arctic Curve can be detected

A  ASM with only
 entries in the top-left

rectangle of size 
and 

Emptiness Formation Probability (EFP)   [FC-Pronko'08]



  

Define the generating function for the refined enumeration:

Now define, for :

The functions  are totally symmetric polynomials of order  in
.

Two important properties of :

Multiple Integral Representation for EFP   [FC-Pronko'08]



  

The following Multiple Integral Representation is valid  (  ): 

where  is  known from [Zeilbeger'96] :  

● rigorous result
● the only  one providing info about  ASM entries away from boundaries
● a similar, more general formula, holds for generic values of   

Ingredients:

● bijection of ASMs with the six-vertex model with domain-wall b.c.
● Quantum Inverse Scattering Method to obtain a recurrence relation, which is

solved in terms of a determinant representation on the lines of Izergin-Korepin
formula;

● Orthogonal Polynomial and Random Matrices technologies to rewrite it as a
multiple integral.

Multiple Integral Representation for EFP   [FC-Pronko'08]



  

Evaluate:   

in the limit:  

using Saddle-Point method.

Saddle-point equations:

Scaling limit of EFP   [FC-Pronko'10]



  

NB1:
●  Vandermonde determinant
● -order pole at Penner Random Matrix model

[Penner'88]  
 NB2:

● By construction, in the scaling limit, EFP is   in the frozen region, and   in the
disordered one, with a stepwise  behaviour in correspondence of the Arctic curve.

● From  the  structure  of  the  Multiple  Integral  Representation,  such  stepwise
behaviour can be ascribed to the position of the SPE roots with respect to the pole
at .

● The considered generalized Penner model allows for condensation of `almost all'
SPE roots at .  [Tan'92] [Ambjorn-Kristjansen-Makeenko'94]

Scaling limit of EFP   [FC-Pronko'10]



  

Condensation of `almost all' 
SPE roots at 

Arctic Curves

NB1:
●  Vandermonde determinant
● -order pole at Penner Random Matrix model

[Penner'88]  
 NB2:

● By construction, in the scaling limit, EFP is   in the frozen region, and   in the
disordered one, with a stepwise  behaviour in correspondence of the Arctic curve.

● From  the  structure  of  the  Multiple  Integral  Representation,  such  stepwise
behaviour can be ascribed to the position of the SPE roots with respect to the pole
at .

● The considered generalized Penner model allows for condensation of `almost all'
SPE roots at .  [Tan'92] [Ambjorn-Kristjansen-Makeenko'94]

Scaling limit of EFP   [FC-Pronko'10]



  

 NB2:
● By construction, in the scaling limit, EFP is   in the frozen region, and   in the

disordered one, with a stepwise  behaviour in correspondence of the Arctic curve.
● From  the  structure  of  the  Multiple  Integral  Representation,  such  stepwise

behaviour can be ascribed to the position of the SPE roots with respect to the pole
at .

● The considered generalized Penner model allows for condensation of `almost all'
SPE roots at .  [Tan'92] [Ambjorn-Kristjansen-Makeenko'94]

Condensation of `almost all' 
SPE roots at 

Arctic Curves

NB1:
●  Vandermonde determinant
● -order pole at Penner Random Matrix model

[Penner'88]  

    

must have two coinciding real roots in the interval:    .   

Mathematically, the condition of total condensation (i.e. the Arctic curve) is given by:

Scaling limit of EFP   [FC-Pronko'10]



  

We have:

[Zeilberger'96]

Applying saddle-point method to the corresponding Euler integral representation we
evaluate the large  behaviour:

where  

The `reduced SPE' thus read:

 

Requiring this has two coinciding roots over the interval   gives:

i.e.:

Evaluation of   (  ) 



  

Ben Wieland (January 2008) http://www.math.brown.edu/~wieland

ASMs: N=500

199 samples  [FC-Pronko'10]



  

http://www.math.brown.edu/~wieland

ASMs: N=1500

10 samples

Ben Wieland (April 2008) 

 [FC-Pronko'10]



  

Arbitrary   ( ):

where

                                       

(Disordered regime,   )
or

                                              

 

(Anti-ferroelectric regime,    )
NB:   



  NB: Arctic Circle 
  straight line  

Red curves: disordered regime,        [FC-Pronko'10]  

Green curves: anti-ferroelectric regime     [FC-Pronko-Zinn-Justin'10]  



  

Criticisms

● The present derivation of Arctic curves is based on an assumption
(the `condensation hypothesis') which is rather bold and probably
hard to prove.



  

Extension of the result to more generic domains

Use the theory provided by    [Kenyon-Okounkov-Sheffield'03-05]  



  

ASA:

the array is obtained from 
a  matrix by erasing 
the top-left   entries.

Extension of the result to ASArrays ?



  

● Moreover the whole procedure is rather `ad hoc' and  probably it
can not be extended to more general situations.

● By `more general situations' we here mean arrays  that are not
anymore matrices, but still have rows and columns, and whose
entries still satisfy the defining conditions of ASMs. We call such
objects Alternating Sign Arrays (ASAs)

Criticisms

● The present derivation of Arctic curves is based on an assumption
(the `condensation hypothesis') which is rather bold and probably
hard to prove.



  

Our previous result on the Arctic curve in a square domain can  be rephrased as
follows:  

The arctic curve is the geometric caustic (envelope) of the family of straight  lines:

Questions:

● What is the geometrical meaning of this family of straight line? 
○ why the constant term is determined by the refined enumeration (via  )? 
○ what determines the angular coefficient of these lines?

Understanding this would provide: 

● an alternative  (geometrical) derivation of the Arctic curve;

●  a geometrical strategy to attack the problem of Arctic curves of ASMs of generic
shape.

Alternative derivation and extension to generic ASA
[FC-Sportiello, in prep]



  

Some numerical results

We here considere an `L-shaped' ASA, corresponding to an  ASM restricted by
the condition that it should have only 's in a top-left rectangular region of size .

[FC-Sportiello, in prep.]
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So the Arctic curve on the  lattice with a
bottom heavy edge at site   is the usual Arctic plus a

straight tangent line crossing the boundary at .

Similar phenomena are also observed in a variety 
of more general situation.
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#  ASM refined at   ,           

# of directed path from   to 



  

Note that the same procedure, applied to the most various situations
always reproduce the above equation !

Maximizing the above probability with respect to  ,  one obtains a family of straight
lines, parameterized by  :

which we immediately recognize! The point is that  this `geometrical' construction
interpretation holds  for generic domains! 



  

Maximizing the above probability with respect to  ,  one obtains a family of straight
lines, parameterized by  :

which we immediately recognize! The point is that  this `geometrical' construction
interpretation holds  for generic domains! 

Note that the same procedure, applied to the most various situations
always reproduce the above equation !

Thus  on  generic  domains  the  problem of  computing  the
Arctic curve is reduced to the evaluation of the generating
function   of the corresponding refined enumeration.



  

Does this really work?

● Checking our recipe in two cases where the boundary correlation function 
is available, we have reproduced:

○ the Arctic curve of the DW 6VM for generic values of  and 

○ the Arctic circle of the rhombus tiling of an hexagon (use the formula for
Semi-strict Gelfand patterns to evaluate the refined enumeration you
need, see [Cohn-Larsen-Propp '98])

What about new results? 
You need to know the corresponding refine enumeration!



  

Consider the ASA built from three bundles crossing each other:
 [Cantini-Sportiello '11]:

A corollary of the generalized R-S correspondence is that
  ,  

where    counts rhombi tilings of the  hexagon.

But more is true: 

 [Cantini-Sportiello '12]



  

where    parametrizes

the Arctic curve, and  

(  )



  

Conclusions?

There is a lot of work to do 
and many things to understand!
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