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Surfaces are classified by their Euler characterisitc: χ(S). The number g is
the type of surface S if χ(S) = 2− 2g. Surfaces can be:

• orientable,
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underlying surface is orientable/non-orientable of type g.

Non-orientable map of type 1/2 Orientable map of type 1



Rooted maps

Each edge consists of two half-edges.

=



Rooted maps

=

Each edge consists of two half-edges. A region between two consecutive half-edges
attached to a vertex is called a corner.



Rooted maps

=

Each edge consists of two half-edges. A region between two consecutive half-edges
attached to a vertex is called a corner.
Each edge consists of two half-edges. A region between two consecutive half-edges
attached to a vertex is called a corner. A map is rooted if it is equipped with a
distinguished half-edge (called the root), together with a distinguished side of this
half-edge.



Rooted maps

=

Each edge consists of two half-edges. A region between two consecutive half-edges
attached to a vertex is called a corner.
Each edge consists of two half-edges. A region between two consecutive half-edges
attached to a vertex is called a corner. A map is rooted if it is equipped with a
distinguished half-edge (called the root), together with a distinguished side of this
half-edge.

Remark:
Tutte noticed that maps are much simpler to enumerate,
when rooted, because of the lack of symmetry. From now on,
all maps will be rooted!
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• When S = sphere, then mS(n) =
2·3n·(2n)!
n!(n+2)! ([Tutte 1960]);

• When χ(S) = 2− 2g, then mS(n) ∼ c(S) · n5(g−1)/212n, where c(S) is a
constant ([Bender, Canfield 1986]);

Combinatorial explanation:

• When S = sphere: bijection with labeled trees [Cori, Vauquelin 1981]

• When χ(S) = 2− 2g, and S is ORIENTABLE: bijection with labeled
tree-like structures ([Marcus, Schaeffer 1996]);
• When χ(S) = 2− 2g, and S is NON-ORIENTABLE: no combinatorial
interpretation was known.
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Map M is bipartite if vertices can be colored by two different colors (V•(M) -
set of black vertices, V◦(M) - set of white vertices, root vertex is black by
convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]
There is a bijection between
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Number of maps with n edges
on S

Number of bipartite
quadrangulations with n faces on S
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A map is called labeled if its vertices are labeled by integers such that:
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• all the vertex labels are positive,
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Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:
• the root vertex has label 1;
• if two vertices are linked by an edge, their labels differ by at most 1.

If in addition we have:
• all the vertex labels are positive,

then the map is called well-labeled.

1
1

1

2

2

2

3

this map is labeled and well-labeled as well
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Are non-orientable maps
different?
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Corollary:
Red map φ(q) is a one-face well-labeled
rooted map with n edges, where n is the
number of faces of q.

1



General case (III)

{rooted, bipartite quadrangulations on S with n faces and Ni vertices
at distance i from the root vertex (i ≥ 1)}

↔
{rooted, WELL-LABELED, one-face maps on S with n edges and Ni

vertices of label i (i ≥ 1)}
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General case (III)

⇓

{rooted, POINTED bipartite quadrangulations on S with n faces and
Ni vertices at distance i from the pointed vertex (i ≥ 1)}

↔
{rooted, LABELED, one-face maps on S equipped with a sign
ε ∈ {+,−} with Ni vertices of label i+ (`min − 1)(i ≥ 1)}

Double rooting trick and Hall’s marriage theorem!

{rooted, bipartite quadrangulations on S with n faces and Ni vertices
at distance i from the root vertex (i ≥ 1)}

↔
{rooted, WELL-LABELED, one-face maps on S with n edges and Ni

vertices of label i (i ≥ 1)}



Applications - enumeration

be the generating function of rooted maps of type g pointed at a vertex or a
face, by the number of edges. Moreover let U ≡ U(t) and T ≡ T (t) be the
two formal power series defined by: T = 1+3tT 2, U = tT 2(1+U +U2).
Then QS(t) is a rational function in U .

Theorem [Bender, Canfield 1986]
Let

QS(t) :=
∑
n≥0 ~qS,•t

n =
∑
n≥0(n+ 2− 2h)~qS(n)t

n
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Applications - enumeration

be the generating function of rooted maps of type g pointed at a vertex or a
face, by the number of edges. Moreover let U ≡ U(t) and T ≡ T (t) be the
two formal power series defined by: T = 1+3tT 2, U = tT 2(1+U +U2).
Then QS(t) is a rational function in U .

Theorem [Bender, Canfield 1986]
Let

QS(t) :=
∑
n≥0 ~qS,•t

n =
∑
n≥0(n+ 2− 2h)~qS(n)t

n

Corollary [Bender, Canfield 1986]
When χ(S) = 2− 2g, then there exists a constant c(S) such that the
number mS(n) of rooted maps with n edges on S satisfies:

mS(n) ∼ c(S) · n5(g−1)/212n.

Remark
Our main theorem allows us to recover Bender and Canfield results (that was
already recovered using combinatorial methods in the orientable case
[Chapuy, Marcus, Schaeffer 2009]). In particular we can give some explicit
(but very complicated) formula for the constant c(S).



Applications - random maps

Let (M, v) be a map with distinguished vertex v. We define:
• radius of a mapM centered at v by the quantity

R(M, v) = maxu∈V (M) dM(v, u);
• profile of distances from the distinguished point v (for any r > 0) by:

I(M,v)(r) = #{u ∈ V (M) : dM(v, u) = r}.



Applications - random maps

Let (M, v) be a map with distinguished vertex v. We define:
• radius of a mapM centered at v by the quantity

R(M, v) = maxu∈V (M) dM(v, u);
• profile of distances from the distinguished point v (for any r > 0) by:

I(M,v)(r) = #{u ∈ V (M) : dM(v, u) = r}.

Theorem [Chapuy, D. 2015]
Let qn be uniformly distributed over the set of rooted, bipartite
quadrangulations with n faces on S, let v0 be a root vertex of qn and let v∗
be uniformly chosen vertex of qn. Then, there exists a continuous, stochastic
process LS = (LS

t , 0 ≤ t ≤ 1) such that:

• 9
8n

1/4
R(qn, v∗)→ supLS − inf LS;

• 9
8n

1/4
dqn(v0, v∗)→ supLS;

• I(qn,v∗)((8n/9)1/4·)
n+2−2h → IS,

where IS is defined as follows: for every non-negative, measurable
g : R+ → R+,

〈IS, g〉 =
∫ 1

0
dtg(LS

t − inf LS).



Further directions

• Generalization of the Bouttier-Di Francesco-Guitter bijection for non-
orientable maps (bijection between bipartite 2p-angulations, or, more generally
bipartite maps with n faces of prescribed degrees and some kind of non-
orientable mobiles?)



Further directions

• Generalization of the Bouttier-Di Francesco-Guitter bijection for non-
orientable maps (bijection between bipartite 2p-angulations, or, more generally
bipartite maps with n faces of prescribed degrees and some kind of non-
orientable mobiles?)

• Studying random maps on ANY surface in Gromov-Hausdorff topology (using
our bijection and already established methods we (Bettinelli, Chapuy, D.)
can prove a convergence of bipartite quadrangulations up to extraction of
SUBSEQUENCE - what about full convergance)?).



III. Enumeration - different
approach



Enumeration via symmetric functions (I)

LetM be a bipartite map with n edges.
• Degrees of white vertices gives a partition µ of n;
• Degrees of black vertices gives a partition ν of n;
• Degree of faces are even and sum up to 2n, hence
degrees of faces divided by 2 gives a partition τ of n.

We say that a mapM has type (µ, ν, τ).
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Enumeration via symmetric functions (I)

LetM be a bipartite map with n edges.
• Degrees of white vertices gives a partition µ of n;
• Degrees of black vertices gives a partition ν of n;
• Degree of faces are even and sum up to 2n, hence
degrees of faces divided by 2 gives a partition τ of n.

We say that a mapM has type (µ, ν, τ).

Example:

Bipartite mapM with 7 edges on
a projective plane. This map has
type (µ, ν, τ) with:

• µ = (3, 2, 2);
• ν = (3, 2, 2);
• τ = (4, 3);



Enumeration via symmetric functions (II)

• Let µ, ν, τ ` n and letM(µ,ν,τ) (M̃(µ,ν,τ), respectively) be a set of
ORIENTABLE (ALL, respectively) rooted, bipartite maps of type (µ, ν τ).
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• We define two generating functions:
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i pλi(x); p0(x) := 1; pi(x) := xi1 + xi2 + · · · for i ≥ 1.
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∏
�∈λ (a(�) + `(�) + 1) is a hook formula,sλ(x) is Schur

polynomial and Zλ is Zonal polynomial.



Enumeration via symmetric functions (II)

• Let µ, ν, τ ` n and letM(µ,ν,τ) (M̃(µ,ν,τ), respectively) be a set of
ORIENTABLE (ALL, respectively) rooted, bipartite maps of type (µ, ν τ).

• We define two generating functions:
• φ(x, y, z) :=

∑
n≥1 t

n
∑
µ,ν τ`n

∑
m∈M(µ,ν,τ)

pµ(x)pν(y)pτ (z);

• φ(x, y, z) :=
∑
n≥1 t

n
∑
µ,ν τ`n

∑
m∈M(µ,ν,τ)

pµ(x)pν(y)pτ (z);

• φ̃(x, y, z) :=
∑
n≥1 t

n
∑
µ,ν τ`n

∑
m∈M̃(µ,ν,τ)

pµ(x)pν(y)pτ (z);

where pλ(x) is a power-sum symmetric function, i.e.:

pλ(x) :=
∏
i pλi(x); p0(x) := 1; pi(x) := xi1 + xi2 + · · · for i ≥ 1.

Theorem

• φ(x, y, z) = t ∂∂t log
(∑

n≥0
∑
λ`nHλsλ(x)sλ(y)sλ(z)t

n
)
[Jackson, Visentin

1990],
• φ̃(x, y, z) = 2t ∂∂t log

(∑
n≥0

∑
λ`n

1
H2λ

Zλ(x)Zλ(y)Zλ(z)t
n
)
[Goulden, Jackson

1996],
where Hλ =

∏
�∈λ (a(�) + `(�) + 1) is a hook formula,sλ(x) is Schur

polynomial and Zλ is Zonal polynomial.

product of
three
symmetric
functions



Enumeration via symmetric functions (II)

• Let µ, ν, τ ` n and letM(µ,ν,τ) (M̃(µ,ν,τ), respectively) be a set of
ORIENTABLE (ALL, respectively) rooted, bipartite maps of type (µ, ν τ).

• We define two generating functions:
• φ(x, y, z) :=

∑
n≥1 t

n
∑
µ,ν τ`n

∑
m∈M(µ,ν,τ)

pµ(x)pν(y)pτ (z);

• φ(x, y, z) :=
∑
n≥1 t

n
∑
µ,ν τ`n

∑
m∈M(µ,ν,τ)

pµ(x)pν(y)pτ (z);

• φ̃(x, y, z) :=
∑
n≥1 t

n
∑
µ,ν τ`n

∑
m∈M̃(µ,ν,τ)

pµ(x)pν(y)pτ (z);

where pλ(x) is a power-sum symmetric function, i.e.:

pλ(x) :=
∏
i pλi(x); p0(x) := 1; pi(x) := xi1 + xi2 + · · · for i ≥ 1.

Theorem

• φ(x, y, z) = t ∂∂t log
(∑

n≥0
∑
λ`nHλsλ(x)sλ(y)sλ(z)t

n
)
[Jackson, Visentin

1990],
• φ̃(x, y, z) = 2t ∂∂t log

(∑
n≥0

∑
λ`n

1
H2λ

Zλ(x)Zλ(y)Zλ(z)t
n
)
[Goulden, Jackson

1996],
where Hλ =

∏
�∈λ (a(�) + `(�) + 1) is a hook formula,sλ(x) is Schur

polynomial and Zλ is Zonal polynomial.

normalization
constant

product of
three
symmetric
functions



Jack symmetric function

Schur polynomials and Zonal polynomials are special cases of Jack
polynomials Jαλ (x) (for special values of α).

• J (1)
λ (x) = |λ|!

Hλ
sλ(x);

• J (2)
λ (x) = Zλ(x).



Jack symmetric function

Schur polynomials and Zonal polynomials are special cases of Jack
polynomials Jαλ (x) (for special values of α).
Let us define

ψ(x, y, z, α) := αt ∂∂t log
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〈J(α)
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(α)
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)

=∑
n≥1 t

n
∑
µ,ν,τ`n hµ,ντ (β)pµ(x)pν(y)pτ (z),

where β = α− 1.
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Jack symmetric function

Schur polynomials and Zonal polynomials are special cases of Jack
polynomials Jαλ (x) (for special values of α).
Let us define

ψ(x, y, z, α) := αt ∂∂t log

(∑
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∑
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(α)
λ (z)

〈J(α)
λ ,J

(α)
λ 〉

tn
)
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n≥1 t

n
∑
µ,ν,τ`n hµ,ντ (β)pµ(x)pν(y)pτ (z),

where β = α− 1.

• ψ(x, y, z, 0) = φ(x, y, z) hence hµ,ν,τ (0) = |M(µ,ν,τ)|;
• ψ(x, y, z, 1) = φ̃(x, y, z) hence hµ,ν,τ (1) = |M̃(µ,ν,τ)|;

Conjecture (β-conjecture) [Goulden, Jackson 1996]

Let µ, ν, τ ` n. Then hµ,ν,τ (β) is a polynomial in β with positive, integer
coefficients. Moreover, there exists a statistic η : M̃(µ,ν,τ) → N such that:

hµ,ν,τ (β) =
∑
m∈M̃(µ,ν,τ)

βη(m)

and η
(
M(µ,ν,τ)

)
= 0, η

(
M̃(µ,ν,τ) \M(µ,ν,τ)

)
> 0.
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• maps (not necessarily bipartite) with n edges, vertex distribution ν, and face
distribution τ :
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Bijection between:
• bipartite maps of type ((2n), ν, τ), where ν, τ ` 2n,
• maps (not necessarily bipartite) with n edges, vertex distribution ν, and face
distribution τ :

Theorem [La Croix 2009]

Let ν ` 2n and 1 ≤ v ≤ 2n be an integer. Then there exists a statistic
"measure of non-orientability" η : M̃(µ,ν,τ) → N such that:∑
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What is known?

Bijection between:
• bipartite maps of type ((2n), ν, τ), where ν, τ ` 2n,
• maps (not necessarily bipartite) with n edges, vertex distribution ν, and face
distribution τ :

Theorem [La Croix 2009]

Let ν ` 2n and 1 ≤ v ≤ 2n be an integer. Then there exists a statistic
"measure of non-orientability" η : M̃(µ,ν,τ) → N such that:∑

τ :`(τ)=v h(2n),ν,τ (β) =
∑
m∈

⋃
τ:`(τ)=v M̃((2n),ν,τ)

βη(m)

and η
(
M(µ,ν,τ)

)
= 0, η

(
M̃(µ,ν,τ) \M(µ,ν,τ)

)
> 0.

∼ set of maps with n edges,
vertex distribution ν and fixed
number of faces v.
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Measure of non-orientability

We will define η inductively be edge-delation process.
Types of edges:
• bridge - delating it decomposes a map into two connected components,
• handle - delating it increases the number of faces by 1,
• border - delating it decreases the number of faces by 1,
• twisted edge - deleting it does not change the number of faces.
Definition (of η) [La Croix 2009]
• If m has no edges then η(m) = 0.
• Otherwise, we delate a root edge e and we produce one, or two rooted
maps:
◦ If e is a bridge, we obtain maps m1,m2, and η(m) := η(m1) + η(m2),
◦ If e is not a bridge, we produce a single map m′:
− If e is a border then η(m) := η(m′),
− If e is a twisted then η(m) := η(m′) + 1,
− If e is a handle then there exists a second map σem obtained from m by
twisting a root edge e, such that a root edge of σem is a handle too. We
define {η(m), η(σem)} := {η(m′), η(m′) + 1} chosen in any canonical way
such that η(m) = 0 and η(σem) = 1 for m orientable.
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What is known in general case?

Not much... For arbitrary partitions µ, ν, τ ` n:
• strictly from the construction hµ,ν,τ (β) is a rational function in β with rational
coefficients,

• hµ,ν,τ (β − 1) = (−β)n+2−`(µ)−`(ν)−`(τ)hµ,ν,τ (β
−1 − 1) as a rational function

[La Croix 2009].

Theorem [D., Féray 2015]

For any µ, ν, τ ` n the quantity hµ,ν,τ (β) is a polynomial in β with rational
coefficients.

Remark:
Unfortunately, we are unable to prove positivity nor integrality
in β-conjecture, so this challange is still open!

Top-degree coeffcient of hµ,ν,τ (β) is given by
(−1)n+2−`(µ)−`(ν)−`(τ)hµ,ν,τ (−1)
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• hµ,ν,τ (0) is a number of orientable maps of type (µ, ν, τ),
• hµ,ν,τ (1) is a number of all maps of type (µ, ν, τ),
• ±hµ,ν,τ (−1) is a number of unhandled maps of type (µ, ν, τ).

Assume that
hµ,ν,τ (β) =

∑
m∈M̃(µ,ν,τ)

βη(m),

where η is a measure of non-orientability defined by Le Croix. Then maps, which are
contributing to the top-degree coefficient are exactly these, where no handles appear
during edge-deletion procedure.

Theorem [D., Féray 2015]

There exists a statistic "measure of non-orientability" η : M̃(µ,ν,τ) → N such

that η
(
M(µ,ν,τ)

)
= 0, η

(
M̃(µ,ν,τ) \M(µ,ν,τ)

)
> 0 and such that for any

partitions µ, ν ` n and for any β ∈ {−1, 0, 1} the following equality holds
true:

hµ,ν,(n)(β) =
∑
m∈M̃(µ,ν,(n))

βη(m).
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Lemma [D., Féray 2015]
There is a bijection between unhandled maps of type (µ, ν, (n)) and
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Lemma [D., Féray 2015]
There is a bijection between unhandled maps of type (µ, ν, (n)) and
orientable maps of type (µ, ν, τ) for some τ ` n. Moreover, for any
unhandled one-face map m, an associated orientable map f(m) is obtained
by twisting some edges e1, . . . , el of m, that is f(m) is of the form
σel · · ·σe1m.

Proof:
• Induction on the number of edges n;
• m - one-face unhandled map. Its root e might be:
◦ a bridge;
Then m \ e decompose into two disjoint unhandled one-face maps m1,m2.
Let f(m1) = σel · · ·σe1m1 and f(m2) = σẽk · · ·σẽ1m2. Then we define
f(m) = σel · · ·σe1σẽk · · ·σẽ1m.

m1
m2

e
m =

f(m1) f(m2)

e

f(m) =
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Lemma [D., Féray 2015]
There is a bijection between unhandled maps of type (µ, ν, (n)) and
orientable maps of type (µ, ν, τ) for some τ ` n. Moreover, for any
unhandled one-face map m, an associated orientable map f(m) is obtained
by twisting some edges e1, . . . , el of m, that is f(m) is of the form
σel · · ·σe1m.

Proof:
• Induction on the number of edges n;
• m - one-face unhandled map. Its root e might be:
◦ a bridge;
◦ twisted edge;
Then m \ e = m′ is unhandled one-face map, and f(m′) = σel · · ·σe1m′ is
orientable. Then exactly one from these maps σel · · ·σe1m or σel · · ·σe1σem
is orientable and we define f(m) to be an orientable one.

σel · · ·σe1m σel · · ·σe1σem
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One-face unhandled maps (II)

Lemma [D., Féray 2015]
There is a bijection between unhandled maps of type (µ, ν, (n)) and
orientable maps of type (µ, ν, τ) for some τ ` n. Moreover, for any
unhandled one-face map m, an associated orientable map f(m) is obtained
by twisting some edges e1, . . . , el of m, that is f(m) is of the form
σel · · ·σe1m.

Proof:
• Induction on the number of edges n;
• m - one-face unhandled map. Its root e might be:
◦ a bridge;
◦ twisted edge;
• Construction is easily reversible.

Question:
What can we say about the class of unhandled maps with arbitrary face
distribution? Are they in a bijection with some class of face-colored
orientable maps? Is η introduced by La Croix is a correct invariant in
general?
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