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The origins of the circle method

Motivation: Integer partitions

Definition

A partition of a positive integer n is a finite non-increasing sequence of
positive integers λ1, . . . , λm such that λ1 + · · ·+ λm = n. The integers
λ1, . . . , λm are called the parts of the partition.

Example

There are 5 partitions of 4:

4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1.

Let p(n) denote the number of partitions of n.
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The origins of the circle method

Natural questions

Question of Naudé (1740): How many partitions of 50 into 7 distinct
parts?

Solution of Euler: generating functions

Let n, be positive integers and let Q(n, k) denote the number of partitions
of n into k distinct parts. Then

1 +
∑
n≥1

∑
k≥1

Q(n, k)zkqn = (1 + zq)(1 + zq2)(1 + zq3)(1 + zq4) · · ·

=
∏
n≥1

(1 + zqn).

Recurrence relation: Q(n, k) = Q(n − k, k) + Q(n − k , k − 1).

⇒ There are 522 partitions of 50 into 7 distinct parts.
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The origins of the circle method

Natural questions
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The origins of the circle method

Natural questions

Let p(n, k) denote the number of partitions of n into k parts. Then, by
the same principle:

1 +
∑
n≥1

∑
k≥1

p(n, k)zkqn =
∏
n≥1

1

(1− zqn)
.

Recurrence relation: p(n, k) = p(n − 1, k − 1) + p(n − k , k).
By Euler’s pentagonal number theorem∑

n≥0

p(n)qn

(∑
n∈Z

(−1)nq
n(3n−1)

2

)
= 1,

we have

p(n) = p(n−1)−p(n−2)+p(n−5)+p(n−7)−p(n−12)−p(n−15)+· · · .

→ Allows to compute p(1), . . . , p(n) in time O
(
n

3
2

)
.
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The origins of the circle method

Natural questions

Using the previous algorithm, one can compute the first values of p(n):

p(10) = 42, p(20) = 627, p(50) = 204226,

p(100) = 190569292, p(200) = 3972999029388.

The quantity p(n) increases very fast with n. How fast does it grow
(asymptotic formula)?
Answer:

Theorem (Hardy-Ramanujan 1918)

As n→∞,

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

Proof: circle method
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The origins of the circle method

Natural questions

Is it possible to find an exact formula for p(n)?

Answer:

Theorem (Hardy-Ramanujan-Rademacher 1937)

For every positive integer n,

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)k1/2

 d

dx

sinh
(
π
k

(
2
3

(
x − 1

24

))1/2
)

(
x − 1

24

)1/2


x=n

,

where
Ak(n) =

∑
0≤h<k
(h,k)=1

ωh,ke
−2πinh

k ,

and ωh,k is a (particular) 24-th root of unity.

Proof: slightly modified version of the circle method
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The classical circle method
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The classical circle method

A modular form

The generating function for partitions is

P(q) :=
∑
n≥0

p(n)qn =
∏
n≥1

1

(1− qn)
= e

2iπτ
24

1

η(τ)
,

where q = e2iπτ and η(τ) := eiπτ/12
∏∞

k=1

(
1− e2iπkτ

)
.

The function η is a modular form:

some holomorphicity conditions

∀A =

(
a b
c d

)
∈ SL2(Z), η

(
aτ+b
cτ+d

)
= ν(A)(cτ + d)

1
2 η(τ).

Example

η

(−1

τ

)
=
√
−iτη(τ).
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The classical circle method

An integral on a circle

By Cauchy’s theorem, we have:
For all n ∈ N,

p(n) =
1

2iπ

∮
γ

P(q)

qn+1
dq,

where γ is any circle centered at the
origin with radius ρ < 1.

∏N
k=1

1
1−qk has a pole of order bNk c

at every point q = e
2iπh
k with

(h, k) = 1.

0

ρ

1
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The classical circle method

Cutting the circle

By the transformation formula for η, we can evaluate P(q) close to every
singularity exp(2iπh/k).

Method:

Choose a correct value for the radius (tending to 1 as N tends to ∞)

Cut the circle into N small arcs (according to which singularity is the
closest)

Give an asymptotic estimation of P(q) on each of these arcs

Integrate each of them and add them

Let N tend to infinity
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The classical circle method

The final result

Theorem (Hardy-Ramanujan-Rademacher 1937)

For every positive integer n,

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)k1/2
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dx
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π
k
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2
3
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24
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,

where
Ak(n) =

∑
0≤h<k
(h,k)=1

ωh,ke
−2πinh

k ,

and ωh,k is a 24-th root of unity.

Corollary:

p(n) ∼
n→∞

1

4n
√

3
e
π
√

2n
3 .
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Wright’s version of the circle method

General principle

In 1933, Wright invented another version of the circle method to study the
asymptotic behaviour of weighted partitions.

If we do not need an exact formula but only an asymptotic estimation, this
version is simpler.

Cut the circle into a major arc
C1 and a minor arc C2,

Give an asymptotic estimate of
the integral on C1,

Show that the integral on C2 is
negligible compared to the
integral on C1.

0

ρ

1

C2

C1
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Wright’s version of the circle method

Asymptotics for p(n)

The generating function P(q) =
∏

n≥1
1

(1−qn) has its dominant singularity
at q = 1.

We write p(n) = M + E , where

M :=
1

2iπ

∫
C1

P(q)

qn+1
dq,

E :=
1

2iπ

∫
C2

P(q)

qn+1
dq.

The correct radius for the upcoming calculations is e
−π√

6n .

Writing q = e−z = e
−π√

6n
(1+ix)

, we choose C1 to be the portion of the circle
where |x | ≤ 1 and C2 the one where 1 ≤ |x | ≤

√
6n.
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Wright’s version of the circle method

Asymptotic behaviour of P(q) close to q = 1

Theorem

Assume that |x | ≤ 1. As n tends to infinity,

P(q) =

√
z

2π
e

π2

6z + O
(
n
−3
4 eπ
√

n
6

)
.

Beginning of the proof:

P(q) =
q

1
24

η(τ)

=
√
−iτ q

1
24

η
(−1
τ

)
=
√
−iτ e

2πiτ
24

e
−2iπ
24τ
∏

k≥1

(
1− e

−2kπi
τ

) = · · ·
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Wright’s version of the circle method

Asymptotic behaviour of P(q) far from q = 1

Lemma

Let P(q) = q
1

24

η(τ) be the generating function for partitions. Assume that

τ = u + iv ∈ H. For Mv ≤ |u| ≤ 1
2 and v → 0, we have that

|P(q)| �
√
v exp

[
1

v

(
π

12
− 1

2π

(
1− 1√

1 + M2

))]
.

The previous lemma with M = 1, u = −x
2
√

6n
and v = 1

2
√

6n
gives the

following.

Theorem

Assume that 1 ≤ |x | ≤
√

6n. As n tends to infinity,

|P(q)| � n
−1
4 e

π
√

n
6
− 1

π

√
3n
2 .
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Wright’s version of the circle method

The integral on C1

After changes of variable (v = 1 + ix) and some calculation, we obtain

M =
1

i2
3
2 (6n)

3
4

∫ 1+i

1−i

√
veπ
√

n
6 ( 1

v
+v)dv + O

(
n
−5
4 e

π
√

2n
3

)

=
π

√
2(6n)

3
4

(
I−3

2

(
π

√
2n

3

)
+ O

(
e

π
2

√
3n
2

))
+ O

(
n
−5
4 e

π
√

2n
3

)
,

where I−3
2

is the Bessel function defined as

I−s−1 (2u) :=
1

2πi

∫
Γ
tseπu(t+ 1

t )dt.

I`(x) =
x→∞

ex√
2πx

+ O

(
ex

x
3
2

)
.

⇒ M =
n→∞

1

4n
√

3
e
π
√

2n
3 + O

(
n
−5
4 e

π
√

2n
3

)
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The integral on C1

After changes of variable (v = 1 + ix) and some calculation, we obtain

M =
1

i2
3
2 (6n)

3
4

∫ 1+i

1−i

√
veπ
√

n
6 ( 1

v
+v)dv + O

(
n
−5
4 e

π
√

2n
3

)

=
π

√
2(6n)

3
4

(
I−3

2

(
π

√
2n

3

)
+ O

(
e

π
2

√
3n
2

))
+ O

(
n
−5
4 e

π
√

2n
3

)
,

where I−3
2

is the Bessel function defined as

I−s−1 (2u) :=
1

2πi

∫
Γ
tseπu(t+ 1

t )dt.
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2πx

+ O
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2
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Wright’s version of the circle method

The integral on C2

By the estimate for P(q) far from the dominant pole, we have

Theorem

As n→∞,

E � n
1
4 e
π
√

2n
3
− 1

π

√
3n
2 .

This is exponentially small compared to

M =
1

4n
√

3
e
π
√

2n
3 + O

(
n
−5
4 e

π
√

2n
3

)
.

Thus

p(n) = M + E ∼
n→∞

1

4n
√

3
e
π
√

2n
3 .
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The two-variable circle method

Outline

1 The origins of the circle method

2 The classical circle method

3 Wright’s version of the circle method

4 The two-variable circle method
Motivation
Dyson’s conjecture: the two-variable circle method for Jacobi forms
Asymptotics for the rank : the two-variable circle method for mock
Jacobi forms

5 Perspectives
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The two-variable circle method Motivation

Ramanujan’s congruences

Ramanujan’s congruences (1919)

For every non-negative integer n,

p(5n + 4) ≡0 mod 5,

p(7n + 5) ≡0 mod 7,

p(11n + 6) ≡0 mod 11.

Original proof using q-series identities

Is there a combinatorial explanation?
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The two-variable circle method Motivation

The rank

In 1944, Dyson defines the rank to explain the congruences mod 5 and 7.

Definition

The rank of a partition is defined as its largest part minus its number of
parts.

Let N(m, n) denote the number of partitions of n with rank m.

Theorem

For all n, ∑
m≡0 mod 5

N(m, 5n + 4) = · · · =
∑

m≡4 mod 5

N(m, 5n + 4).

∑
m≡0 mod 7

N(m, 7n + 5) = · · · =
∑

m≡6 mod 7

N(m, 7n + 5).

The rank fails to explain the congruences modulo 11.
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The two-variable circle method Motivation

The crank

Dyson conjectures the existence of another quantity, which he calls crank,
that would explain all three congruences.

Definition (Andrews-Garvan 1988)

If for a partition λ, o(λ) denotes the number of ones in λ, and µ(λ) is the
number of parts strictly larger than o(λ), then the crank of λ is defined by

crank(λ) :=

{
largest part of λ if o(λ) = 0,
µ(λ)− o(λ) if o(λ) > 0.

Let M(m, n) denote the number of partitions of n with crank m.

Theorem

The crank explains the three congruences. In particular∑
m≡0 mod 11

M(m, 11n + 6) = · · · =
∑

m≡10 mod 11

M(m, 11n + 6).
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The two-variable circle method Motivation

Dyson’s conjecture

Conjecture (Dyson 1989)

As n and m tend to infinity, we have

M (m, n) ∼ 1

4
βsech2

(
1

2
βm

)
p(n),

with β := π√
6n

.

What is the precise range of m on which it is valid?

What is the error term?

Is there also a two-variable asymptotic formula for the rank?
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The two-variable circle method Asymptotics for the crank

Outline

1 The origins of the circle method

2 The classical circle method

3 Wright’s version of the circle method

4 The two-variable circle method
Motivation
Dyson’s conjecture: the two-variable circle method for Jacobi forms
Asymptotics for the rank : the two-variable circle method for mock
Jacobi forms

5 Perspectives
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The two-variable circle method Asymptotics for the crank

The solution

Theorem (Bringmann-D. 2014)

Dyson’s conjecture is true. Precisely, if |m| ≤ 1
π
√

6

√
n log n, we have as

n→∞,

M(m, n) =
β

4
sech2

(
βm

2

)
p(n)

(
1 + O

(
β

1
2 |m| 13

))
,

with β := π√
6n
.

Proof with the two-variable circle method
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The two-variable circle method Asymptotics for the crank

A Jacobi form

The generating function for M(m, n) is the following (except for M(m, 0)
and M(m, 1)):

C (ζ; q) : =
∑
m∈Z
n∈N

M(m, n)ζmqn

=
i
(
ζ

1
2 − ζ− 1

2

)
q

1
24 η2(τ)

θ (w ; τ)
,

where q := e2πiτ , ζ := e2πiw , and

θ (w ; τ) := iζ
1
2 q

1
8

∞∏
n=1

(1− qn) (1− ζqn)
(
1− ζ−1qn−1

)
.
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The two-variable circle method Asymptotics for the crank

A Jacobi form

The function θ (w ; τ) is a Jacobi form :

modular with respect to τ

elliptic with respect to w (other transformation properties)

Example

For w ∈ C and τ ∈ H, we have

θ

(
w

τ
;−1

τ

)
= −i

√
−iτe πiw2

τ θ(w ; τ).

⇒ The two-variable generating function for the crank has modular
transformation properties.
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The two-variable circle method Asymptotics for the crank

The two-variable circle method

By Cauchy’s theorem, define

Cm(q) :=
∞∑
n=0

M (m, n) qn =

∫ 1
2

− 1
2

C
(
e2πiw ; q

)
e−2πimwdw

By Cauchy’s theorem again, we have

M (m, n) =
1

2πi

∮
C

Cm(q)

qn+1
dq,

where C is the circle centred at the origin with radius e−β.

With the transformation formulas, we estimate Cm(q) close to and far
from the dominant pole q = 1 and we cut the circle C into a major
arc around 1 and a minor arc. Again, the integral on the minor arc is
asymptotically negligible.
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The two-variable circle method Asymptotics for the crank

Estimates of Cm(q)

Close to q = 1
We use the transformation formulas for C (ζ, q) to obtain asymptotic
expansions close to q = 1 (depending on ζ)

We integrate them for ζ on the unit circle (the sech2 appears at this
step)

We obtain that for |x | ≤ 1 (q = e−β(1+ixm−
1
3 )), as n→∞,

Cm (q) =
z

3
2

4(2π)
1
2

sech2

(
βm

2

)
e

π2

6z +O

(
β

5
2m

2
3 sech2

(
βm

2

)
eπ
√

n
6

)
.

Far from q = 1
Assume that 1 ≤ |x | ≤ πm

1
3

β . Then we have, as n→∞,

|Cm(q)| � n
1
2 exp

(
π

√
n

6
−
√

6n

8π
m−

2
3

)
.
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The two-variable circle method Asymptotics for the crank

Integral on the second circle

Define

M :=
β

2πm
1
3

∫
|x |≤1

Cm
(
e−β(1+ixm−

1
3 )

)
eβn(1+ixm−

1
3 )dx ,

E :=
β

2πm
1
3

∫
1≤|x |≤πm

1
3

β

Cm
(
e−β(1+ixm−

1
3 )

)
eβn(1+ixm−

1
3 )dx .

We have as n→∞

M =
β

4
sech2

(
βm

2

)
p(n)

(
1 + O

(
m

1
3

n
1
4

))
.

As n→∞
E � n

1
2 exp

(
π

√
2n

3
−
√

6n

8π
m−

2
3

)
� M.
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1 + O

(
m

1
3

n
1
4

))
.

As n→∞
E � n

1
2 exp

(
π

√
2n

3
−
√

6n

8π
m−

2
3

)
� M.
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The two-variable circle method Asymptotics for the rank

The theorem

The rank has the same asymptotic formula as the crank.

Theorem (D.-Mertens 2014)

If |m| ≤ 1
π
√

6

√
n log n, we have as n→∞,

N(m, n) =
β

4
sech2

(
βm

2

)
p(n)

(
1 + O

(
β

1
2 |m| 13

))
,

with β := π√
6n
.

Proof: again with the two-variable circle method, but more technical
difficulties.
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The two-variable circle method Asymptotics for the rank

A mock Jacobi form

We always assume τ ∈ H, w ∈ R, q := e2πiτ , and ζ := e2πiw . The
generating function for the rank is the following.

R(ζ; q) : =
∞∑
n=0

∑
m∈Z

N(m, n)ζmqn

=
∞∑
n=0

qn
2

(ζq)n(ζ−1q)n

=
q

1
24

η(τ)

 i
(
ζ

1
2 − ζ− 1

2

)
η3(3τ)

θ(3w ; 3τ)
− ζ−1

(
ζ

1
2 − ζ− 1

2

)
A1(3w ,−τ ; 3τ)

−ζ
(
ζ

1
2 − ζ− 1

2

)
A1(3w , τ ; 3τ)

]
,

where A1 is an Appell-Lerch sum.
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The two-variable circle method Asymptotics for the rank

A mock Jacobi form

The Appell-Lerch sum

A1(u, v ; τ) := eπiu
∑
n∈Z

(−1)nq
n2+n

2 e2πinv

1− e2πiuqn

is a mock Jacobi form:

modular transformation with respect to τ but an error integral appears in
the transformation formula.

Example

−1

τ
e

πi(u2−2uv)
τ A1

(
u

τ
,
v

τ
;−1

τ

)
+ A1(u, v ; τ) =

1

2i
h(u − v ; τ)θ(v ; τ),

where

h(z ; τ) :=

∞∫
−∞

eπiτw
2−2πzw

cosh(πw)
dw .
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The two-variable circle method Asymptotics for the rank

A mock Jacobi form

The Appell-Lerch sum

A1(u, v ; τ) := eπiu
∑
n∈Z

(−1)nq
n2+n

2 e2πinv

1− e2πiuqn

is a mock Jacobi form:
modular transformation with respect to τ but an error integral appears in
the transformation formula.

Example

−1

τ
e

πi(u2−2uv)
τ A1

(
u

τ
,
v

τ
;−1

τ

)
+ A1(u, v ; τ) =

1

2i
h(u − v ; τ)θ(v ; τ),

where

h(z ; τ) :=

∞∫
−∞

eπiτw
2−2πzw

cosh(πw)
dw .

Jehanne Dousse (UZH) The two-variable circle method Séminaire Flajolet 30 / 32



The two-variable circle method Asymptotics for the rank

A mock Jacobi form

The Appell-Lerch sum

A1(u, v ; τ) := eπiu
∑
n∈Z

(−1)nq
n2+n

2 e2πinv

1− e2πiuqn

is a mock Jacobi form:
modular transformation with respect to τ but an error integral appears in
the transformation formula.

Example

−1

τ
e

πi(u2−2uv)
τ A1

(
u

τ
,
v

τ
;−1

τ

)
+ A1(u, v ; τ) =

1

2i
h(u − v ; τ)θ(v ; τ),

where

h(z ; τ) :=

∞∫
−∞

eπiτw
2−2πzw

cosh(πw)
dw .

Jehanne Dousse (UZH) The two-variable circle method Séminaire Flajolet 30 / 32



The two-variable circle method Asymptotics for the rank

The two-variable circle method

As for the crank, by Cauchy’s theorem, define

Rm(q) :=
∞∑
n=0

N (m, n) qn =

∫ 1
2

− 1
2

R
(
e2πiw ; q

)
e−2πimwdw

and write

N (m, n) =
1

2πi

∮
C

Rm(q)

qn+1
dq,

where C is the circle centred at the origin with radius e−β.

With the transformation formulas, we estimate Rm(q) close to and far
from the dominant pole q = 1 and we cut the circle C into a major
arc around 1 and a minor arc. But we also need to analyse the
contribution of the error integrals in R

(
e2πiw ; q

)
.

Again, the integral on the minor arc is asymptotically negligible.
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Perspectives

Perspectives

The two-variable circle has already been applied to study the
asymptotics of other quantities:

I ranks of unimodal sequences (Bringmann-Kim 2014)
I χy -genus of Hilbert schemes of points on K3 surfaces (Manschot-

Zapata Rolon 2015)
I M2-rank of partitions without repeated odd parts (Mao 2015)

Is it possible to find a circle method for Jacobi forms with more than
two variables?
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