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Abstract
Asymptotics of divide-and-conquer recurrences is usually dealt either with elementary

inequalities or with sophisticated methods coming from analytic number theory. Philippe
Dumas proposes a new approach based on linear algebra. The example of the complexity of
Karatsuba’s algorithm is used as a guide in this summary.

The complexity analysis of divide-and-conquer algorithms gives rise to recurrences that relate
the cost at size n to the cost at fractions of n. For instance, the complexity of Karatsuba’s
multiplication algorithm for polynomials of degree n is governed by

c(n) = n+ 3c (dn/2e) . (1)

The first values taken by this sequence with c(1) = 1 are displayed in Figure 1.
The linear term n is of course dependent on the complexity model. However, the analysis

is quite robust and any function growing linearly would lend itself to this analysis, leading to
similar results with minor technical adjustments.

Notation In this presentation, general consideration are interlaced with this particular exam-
ple. In order to help distinguish between the general and the specific, we use blue characters to
display the particulars of the example.

1 Divide-and-conquer Recurrences
A more complicated example is provided by the analysis of a recent “dichopile” algorithm due to
J. Oudinet. This algorithm performs random generation from a regular language with uniform

Figure 1: The sequence c(n) (black) and its upper bound from Section 3 (red)
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distribution over its words of length n. It is designed to avoid using too much memory by storing
intermediate values for sizes n/2, 3n/4, 7n/8, . . . . Its complexity for length n (in terms of the
number of arithmetic operations) obeys the recurrence

f(n) = n+f(bn/2c−1)+g(dn/2e), where g(n) = f(bn/2c−1)+g(dn/2e), f(1) = 1, g(1) = 0.

The classical Rudin-Shapiro sequence also satisfies a divide-and-conquer recurrence: it is
the sequence of coefficients of the polynomial of degree n with coefficients in {−1, 1} whose
maximum modulus over |z| = 1 is mimimal (normalized with P (0) = 1). It turns out that
whatever the degree, this sequence satisfies

a2n = an, a2n+1 = (−1)nan.

2 2-rational sequences
The Rudin-Shapiro sequence is a 2-rational sequence, which means that the vector space spanned
by the sequence (an) and the iterates of the operators S0 : (un) 7→ (u2n) and S1 : (un) 7→ (u2n+1)
applied to it is finite dimensional. Indeed, the identities

S0(an) = (an), S0(S1(an)) = (a4n+1) = (an) and S1(S1(an)) = (a4n+3) = (−a2n+1)

show that all these sequences are generated by (an) and S1(an). Similarly, the sequence (c(n))
from the analysis of Karatsuba’s algorithm is 2-rational, with a space of dimension 4 generated
by (1), (n), (c(n)), (c(n+ 1)):

α+ βn+ γc(n) + δc(n+ 1) S07→ α+ β(2n) + γ(2n+ 3c(n)) + δ(2n+ 1 + 3c(n+ 1)), (2)

α+ βn+ (γ + δ)c(n) + δ (c(n+ 1)− c(n)) S17→ α+ β(2n+ 1) + (γ + δ)(2n+ 1 + 3c(n+ 1)) (3)
+δ((2(n+ 1) + 3c(n+ 1))− (2n+ 1 + 3c(n+ 1))︸ ︷︷ ︸

1

).

A similar but longer computation shows that the sequence f(n) in the cost of the dichopile
algorithm is also 2-rational (the dimension is 7).

A 2-rational sequence (c(n)) can be given by a linear representation, i.e., matrices A0 and A1
of the operators S0 and S1, the vector L of initial values of the elements of the corresponding
basis at n = 1, and the vector C giving the coordinates of (c(n)). In Karatsuba’s example, the
translation of Equations (2-3) yields

L =
(
1 1 1 5

)
, A0 =


1 0 0 1
0 2 2 2
0 0 3 0
0 0 0 3

 , A1 =


1 1 1 2
0 2 2 2
0 0 0 0
0 0 0 3

 , C =


0
0
1
0

 .

From this representation, the value of the sequence at n, written in base 2 as n = (1bk . . . b1b0)2,
is given by the product

c(n) = LAbk
· · ·Ab1Ab0C.

This shows how 2-rational sequences generalize rational sequences (like Fibonacci’s sequence).
In both cases, rational series from the theory of formal languages underly the structure and the
nth element can be computed by O(logn) matrix products.
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Bounding the norms shows that such a sequence grows at most like O(M log2 n) for some M
that can be taken as max(‖A0‖, ‖A1‖). This also shows that not all solutions of divide-and-
conquer recurrences are 2-rational. For instance, partitions of an integer n into powers of 2 are
obtained either by adding 1 to a similar partition of n− 1 or, if n is even, by multiplying by 2
all parts of a partition of n/2. Thus, their number satisfies a system that looks similar to the
previous ones: b2n+1 = b2n + 1, b2n = bn + b2n−1. However, Mahler showed [9] that b2n behaves
asymptotically like exp(ln2 n/2), which proves that it cannot be 2-rational.

3 Elementary inequalities
In a large number of cases, simple bounds can be obtained rather easily. For instance, the
sequence c(n) from Karatsuba’s complexity equation (1) is increasing (by induction) and there-
fore it is sufficient to consider it at powers of 2 and bound the value at any n by the value
at 2dlog2 ne < 2n. If n = 2k and c(n) =: d(k), the equation becomes

d(k) = 2k + 3d(k− 1) = 2k + 3 · 2k−1 + d(k− 2) = · · · = 3k(1 + 2
3 + 4

9 + . . . ) ≤ 3k+1 = 3 · nlog2 3,

which gives the correct order of growth for the sequence. (See Figure 1).
This technique is often convenient in rough complexity analyses. Its first version is due to

Bentley, Haken and Saxe in 1980 [2]. Modern versions appear under the name “Master Theorem”
in Cormen et alii’s Introduction to Algorithms [3]. More elaborate variants have been developed.
An easy-to-use and relatively general one has been proposed by Yap recently [10].

4 Perron’s formula
Bounding only at powers of 2 misses the fine behavior of the algorithm (see Figure 1). Another
route uses the Dirichlet series

C(s) =
∑
k≥1

c(k + 2)− c(k + 1)
ks

and Perron’s formula (presented for instance in Apostol’s book [1, Th. 11.18])

c(n) = c(2) + lim
T→∞

1
2πi

∫ σ+iT

σ−iT
C(s)(n− 3/2)s

s
ds.

In the case of Karatsuba’s sequence, the recurrence equation (1) translates into

C(s) = ζ(s) + 3 · 2−sC(s) + 12 + 3
∑
k≥1

(c(k + 2)− c(k + 1))
( 1

(2k + 1)s −
1

(2k)s
)

=: ζ(s) + 3 · 2−sC(s) +G(s),

where ζ is Riemann ζ-function and G has abscissa of convergence smaller than that of C. This
equation rewrites

C(s) = ζ(s) +G(s)
1− 3 · 2−s .

In general, the next stage of the analysis consists in shifting the vertical line of integration
past the right-most poles of C(s), that are here vertically aligned at (log 3 + 2kπi)/ log 2, k ∈ Z,
and picking up residues there. Serious analytic precautions have to be taken in order to ensure
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Figure 2: Sequence c(n)/nlog2 3 (black) vs asymptotic behavior (red). Left: Perron’s formula
with the sum of the first 10 terms of the Fourier series. Middle: Perron’s formula with the sum
of the first 40 terms of Eq. (4). Right: the linear algebra asymptotics of Eq. (7).

convergence (or even mere meaningfulness) of the result. In our example, we thus obtain the
following first terms of a Fourier series:

c(n)n− log2 3 ≈ 4.856 + .261 cos(2π ln2(n)) + 1.308 sin(2π ln2(n))
+ 0.055 cos(4π ln2(n)) + .712 sin(4π ln2(n)) + · · · .

Each coefficient requires summing a rather large number of the seriesG and a Gibbs phenomenon
can be observed (see Figure 2).

Another way of obtaining this periodic function is to expand the numerator ζ(s) +G(s) as a
Dirichlet series and integrate term by term, using the fact [8] that for x > 1 such that log2 x 6∈ Z
and for c > log2 3,

1
2πi lim

T→∞

∫ c+iT

c−iT

xs

1− 3 · 2−s
ds

s
= 3blog2 xc+1 − 1

2 .

This gives an asymptotic expansion of the form

nlog2 3Ψ(log2 n) +O(n1+ε),

where Ψ is a periodic function with period 1, given by an expansion that is very easy to compute:

Ψ(x) = 39
2 ·3

bxc−x−57 ·3bx−ln2 2c−x+60 ·3bx−ln2 3c−x−3 ·3bx−ln2 4c−x+6 ·3bx−ln2 5c−x+ · · · . (4)

A relatively friendly theorem based on the use of Perron’s formula has been given recently by
Drmota and Szpankowski [5].

5 Linear Algebra Approach
Recently, Philippe Dumas has shown that in the case of 2-rational sequences, the oscillatory part
of the asymptotic behavior turns out to be accessible through linear algebra considerations [7].

The starting point is to consider the sum of all the values of the sequence up to n:

sn = LC + LA0C + LA1C + LA0A0C + LA0A1C + LA1A0C + · · ·+ LAbk
· · ·Ab0C, (5)

where again n is given by its binary expansion (1bk · · · b0)2. There is no loss of generality in
considering a sum, since the difference of a 2-rational sequence is 2-rational as well and its sum
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is the original sequence. In our running example, it is not difficult to check that c(n+ 1)− c(n)
is defined by

L =
(
1 4

)
, A0 =

(
1 1
0 3

)
, A1 =

(
1 1
0 0

)
, C =

(
0
1

)
.

The sum (5) decomposes as a part where all binary words of length 0, 1, . . . , k over {A0, A1}
are present, plus a part whose length depends on n, where the oscillatory behavior takes place.
This is captured by introducing the matrix function

Sk(x) :=
∑

(0.w)2≤x
w∈{0,1}k

Aw,

so that the sum of interest becomes

sn = L(Im +Q+ · · ·+Qk−1)C + LSk

(
n− 2k

2k

)
C, with k = blog2 nc,

where Q = A0 +A1 and Im is the identity matrix (its dimension m is that of the representation).
The asymptotic behavior of this sum is governed by the largest eigenvalue of Q and the joint
spectral radius of A0 and A1, which is, by definition,

ρ? = lim
k→∞

max
|w|=k

{‖Aw1 · · ·Awk
‖1/k}.

When the largest eigenvalue of Q has modulus not smaller than ρ?, it dictates the asymptotic
behavior of sn. In our example, they both turn out to be equal to 3, which slightly complicates
the analysis.

Recurrence Equations First, distinguishing the binary words of length k + 1 according to
their first letter leads to a recurrence equation:

Sk+1(x) =
{
A0 · Sk(2x), if x < 1/2,
A0 ·Qk +A1 · Sk(2x− 1), otherwise.

Eventually, we are interested in the product Sk(x) · C, so that it is useful to consider the
decomposition of C along the eigenspaces of Q. In particular, subspaces corresponding to
eigenvalues of modulus smaller than ρ? contribute to error terms in the expansion.

In our example, there are two eigenvectors V and W , and all the relevant information is
given by {

QV = 3V,
QW = 2W,

{
A0V = 3V − 3W,
A0W = W,

{
A1V = 3W,
A1W = W,

C = V − 2W.

An easy induction shows that the coordinate of Sk(x)C on V is exactly 3k. It is then natural
to define a function φk(x) by

Sk(x)C = 3kV + 3kφk(x)W.

The recurrence over Sk(x) then translates into

φk+1(x) =

−1 + 1
3φk(2x), if x < 1/2,

−
(

2
3

)k+1
+ 1

3φk(2x− 1), otherwise.
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Figure 3: Left: the solution of the dilation equation (6). Right: the sequence c(n + 1)/3blog2 nc

(black) vs its asymptotic behavior by Eq. (7) (red).

Dilation Equation Letting k tend to infinity, the equation above becomes a simple functional
equation

φ(x) =
{
−1 + 1

3φ(2x), if x < 1/2,
1
3φ(2x− 1), otherwise.

(6)

Setting for simplicity φ(x) = −3
2 + 3

2ψ(x), this turns into the simpler looking:

ψ(x) = 1
3ψ(2x) + 1

3ψ(2x− 1), with ψ(x) = 1 for x > 1 and ψ(x) = 0 for x < 0.

This is a fixed point equation in the space of functions from R+ to [0, 1], space which is complete
for the supremum norm. Thus it has a solution, which is unique. It can be computed by the
“cascade algorithm” [4, §6.5] that consists simply in recursing sufficiently many times. The
resulting (discontinuous) function φ is displayed in Figure 3. It turns out to be closely related
to Cantor’s “devil staircase”.

Convergence Letting φ denote the solution of the dilation equation (6), we then define the
deviation ek(x) of φk from φ by φk(x) = φ(x) + ek(x). This function satisfies a recurrence
equation deduced from the previous ones.

In our example, we get

ek+1(x) =


1
3ek(2x), if x < 1/2,

−
(

2
3

)k+1
+ 1

3ek(2x− 1), otherwise.

For k = 0 we have S0(x)C = C = V −2W and since ‖φ‖∞ ≤ 3/2 we deduce ‖e0‖∞ ≤ 7/2. From
there, an easy induction using the recurrence shows that ‖ek‖∞ ≤ 7

2

(
2
3

)k
→ 0.
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Asymptotic Expansion Multiplying by L on the left then yields a very explicit asymptotic
expansion:

c(n+ 1)− c(1) = sn = L(Id +Q+ · · ·+Qk−1)C + LSk

(
n− 2k

2k

)
C, with k = blog2 nc

= L

(
3k − 1

2 V +O(2k)W
)

+ L(3kV + 3kφ(2{log2 n} − 1)W +O(2k)W ),

= 3k
(
9 + φ(2{log2 n} − 1)

)
+O(2k),

c(n+ 1) = 3blog2 nc
(
9 + φ(2{log2 n} − 1)

)
+O(n). (7)

The match with c(n)/nlog2 3 is better than with the previous method (see Figure 2) and the
normalization by 3blog2 nc reveals more clearly the self-similarity of the curve (Figure 3).

6 A general theorem
The example of Karatsuba’s algorithm is very special because the spectral radius of the matrix Q
is equal to the joint spectral radius of A0 and A1. In general, the situation becomes a bit simpler
and a complete characterisation of the asymptotic behaviour can be given.

Theorem 1 (Dumas 2013). If (sn) is a sequence whose backward differences is defined by a
linear representation L,A0, A1, C, then it behaves asymptotically like

sN =
∑
ρ,θ,m

nlog2 ρ

(
log2 n

m

)
eiθ log2 nΦρ,θ,m(log2 n) +O(nlog2 r),

where the sum is over eigenvalues ρ of Q such that |ρ| > r > ρ?, m is a nonnegative integer
bounded by the multiplicity of the eigenvalue and Φ is a periodic function with period 1.

7 Extensions
By focusing on one example in this summary, we have left out several other issues of the general
case. We refer to the original articles [6, 7] for more information, including the case of B-rational
sequences with B 6= 2 and a full treatment of the dichopile example.
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