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The Hadwiger-Nelson Problem

What is the fewest number of colors needed to color the points of R2, such
that every two points at unit distance have different colors?

Question (Hadwiger 1945, Nelson 1950, Gardner 1960)

... Between 4 and 7 colors

If the coloring of R2 corresponds to a coloring of the faces of some (infinite)
planar graph, then at least 7 colors are needed (Thomassen 1999).

If each color class is measurable, at least 5 colors are needed (Shelah–Soifer 2003).
In particular, it seems that the answer depends of which axioms you consider!

In ZFC, a theorem of de Bruijn and Erdős (1951) tells you that the chromatic
number of a graph is the supremum of the chromatic numbers of its finite
subgraphs.
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Unit-distance graphs

A unit-distance graph is a graph whose vertices can be mapped to R2 such that
any two vertices are adjacent if and only if their images are at distance 1.

Assuming the axiom of choice, the Hadwiger-Nelson Problem boils down to:
What is the maximum chromatic number of a unit-distance graph?

What about small unit-distance graphs?

Deciding whether a graph is a unit-distance graph is complete for the Existential
Theory of the Reals, and in particular NP-hard.



Unit-distance graphs
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FIG. 3. A good 7-coloring of (R2, 1).

Theorem 3. Every unit-distance graph on 6197 or fewer vertices is
6-colorable.

Proof. In the terminology of Lemma 1, C is a good 7-coloring which is
periodic with corresponding constants :=m&1(-m2+1&0.25&b)+
m&1(-m2+1&0.5&b) =m&1(2 -m2+1&0.75&2b) and ;= 1.5 and
#=0.75. The set S defined in Lemma 1 has area A=6b2✓m. Therefore by
Lemma 1 every unit-distance graph induced by fewer than :;✓A points in
the plane is 6-colorable. Since :;✓Ar6197.08 when rounded to the nearest
hundredth, the result is established. K

Theorem 4. Every unit-distance graph on 12 or fewer vertices is
4-colorable.

Proof. Let x be a point in the plane. Consider the interior C $ of a circle
of diameter 1, centered at x. Let B$ be the interior of a regular hexagon,
centered at x, with horizontal top and bottom sides that are cos % apart
where % is given by %+sin %=?✓6, 0�%�?✓2. Let A$ denote the intersec-
tion of B$ and C$. On p. 25 of [2], Croft showed that if translates of C$ are
placed throughout the plane centered at the points of a regular triangular
lattice in which nearest points are at distance 1+cos %, then the resulting
subset S$ of the plane has density - 3 tan(%✓2)$0.2293, where the set S$ is
independent in (R2, 1). By centering translates of C$ instead at the points
of a regular triangular lattice in which nearest points are at distance
0.5+0.5 cos %, it is a simple matter to show that there exist four translates
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Given a metric space X and a real d > 0, let χ(X , d) be the smallest number of
colors in a coloring of the points of X , such that any two points of X at distance
d apart have distinct colors.

For any d > 0, 4 ≤ χ(R2, d) = χ(R2, 1) ≤ 7.

What about natural metric spaces that are not invariant under dilation?

4 ≤ χ(H2, d) = O(d), where H2 denotes the hyperbolic plane.

Theorem (Kloeckner 2015, Parlier and Petit 2017)

Is χ(H2, d) bounded by a universal constant (independent of d)?
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Infinite q-ary trees

Let Tq be the infinite q-ary tree.

If d is odd, then χ(Tq, d) = 2.

If d is even, then q + 1 ≤ χ(Tq, d) ≤ (q − 1)(d + 1).

Theorem (Parlier and Petit 2017)

If d is even, then

( 1
4 − o(1)) d log(q−1)

log d ≤ χ(Tq, d) ≤ (2 + o(1)) d log(q−1)
log d

Theorem (Bousquet, E., Harutyunyan, de Joannis de Verclos 2017)
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Let us prove that χ(Tq, d) ≤ d + q + 1 instead.

d+ 1

d+ q colors

d
2 − 1

log d
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Is there a constant C such that for any planar graph G and odd integer d ,

χ(G , d) ≤ C ?

Problem (van den Heuvel and Naserasr 2013)

d− 1 odd
large χ(G, d− 1)
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