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Coxeter group

e S a finite set; M = (Mst)s,tes @ Symmetric matrix.
M must satisfy mss =1 and mg € {2,3,...} U{oco}

Definition The Coxeter group W associated to M has
generators S and relations (st)™st* =1 for all s,t € S.
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Coxeter group

e S a finite set; M = (Mst)s,tes @ Symmetric matrix.
M must satisfy mss =1 and mg € {2,3,...} U{oco}

Definition The Coxeter group W associated to M has
generators S and relations (st)™st* =1 for all s,t € S.

s =1
Equivalent relations: < ¢ts... = ¢tst... Braid relations
—— N
MmMst mst

In particular ms; = 2 imposes a commutation relation st = ts

e Coxeter graph: Labeled graph encoding M, with vertices S,
edge if mg > 3, and label mg; when mg > 4.

All Coxeter groups are considered irreducible < I' connected.



Coxeter group: examples
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Coxeter group: examples

1) A,—

( ) n—1 54514157 = Si4+15i5i+1
O——O——O—--==--nun- O—o0 6. — G.G- ) — 7

S1 S92 Sn—1 5i8j = 5551, ‘] Z‘ > 1

Isomorphic to the symmetric group S,, via s; <> (2,7 + 1).

(2) Dihedral group I»(m) which is s !

the isometry group of the m-gon.

m™m
o0——=O

S {

Geometry: Every Coxeter group has a geometric
representation in R™ where n = |S|, where:

e Each s € S is a reflection through a hyperplane (s? = 1);
e st is a rotation of order my; ((st)™t = 1).
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1. Finite groups
These are precisely groups of isometries of R™ generated by
orthogonal reflections.

Ex: group of isometries of regular polygons in R?



Rough classification of Coxeter groups

1. Finite groups
These are precisely groups of isometries of R™ generated by
orthogonal reflections.

Ex: group of isometries of regular polygons in R?

2. Affine groups
These are precisely groups of isometries generated by
orthogonal affine reflections.

Ex: group preserving a regular tiling of R3.



Rough classification of Coxeter groups

1. Finite groups
These are precisely groups of isometries of R™ generated by
orthogonal reflections.

Ex: group of isometries of regular polygons in R?

2. Affine groups
These are precisely groups of isometries generated by
orthogonal affine reflections.

Ex: group preserving a regular tiling of R3.

A complete classification exists for both families, classified by
their Coxeter graph.
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Rough classification of Coxeter groups

1. Finite groups
These are precisely groups of isometries of R™ generated by
orthogonal reflections.

Ex: group of isometries of regular polygons in R?
2. Affine groups

These are precisely groups of isometries generated by
orthogonal affine reflections.

Ex: group preserving a regular tiling of R3.

3. All the other Coxeter groups

These correspond to groups of linear transformations of R™
generated by reflections which are not orthogonal.

— Study of sub families: right-angled groups, simply laced
groups, hyperbolic groups, ...



Triangle group T(2,4,5)
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S0S2 = S250
S0515051 — S150S5150

5152815251 = 52851525152

Elements of W

t

Chambers




Triangle group T(2,4,5)

S0S2 = S250
S0515051 — S150S5150

5152815251 = 52851525152

Elements of W

t

Chambers




Length function

Definition Length ¢(w)= minimal [ such that w = s155...s;.

The minimal words are the reduced decompositions of w.

Example In type A, _1 ~ S, £(w) is the number of
inversions of the permutation w.



Length function

Definition Length ¢(w)= minimal [ such that w = s155... 5.

The minimal words are the reduced decompositions of w.

Example In type A, _1 ~ S, £(w) is the number of
inversions of the permutation w.

In the geometric representation, correspond to shortest paths
from the fundamental chamber to the chamber of w.
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Enumeration of elements and reduced expressions.

o If W is a Coxeter group, define W (q Z gt )
weW

Theorem W (q) is a rational function
(Proof by induction on |S|, needs a bit of Coxeter theory.)

Trivial for finite groups (polynomial), but nice product formula
in that case; also nice for affine groups.

(¢®+a°+q+1) (¢*+¢°+¢°+q+1) (1+q)
q®—q°—q*—q3+1

For T'(2,4,5) the g.f. is




Enumeration of elements and reduced expressions.

o If W is a Coxeter group, define W (q Z gt )
weW
Theorem W (q) is a rational function

(Proof by induction on |S|, needs a bit of Coxeter theory.)

Trivial for finite groups (polynomial), but nice product formula
in that case; also nice for affine groups.

(P4 +a+1) (" +a°+a  +a+1) (14
For T(27475) the g_f. 1S (q . quZgﬁ%—qci—q%—l—lq )( d

e Redw (g Z Red(w)|¢"™ = Y ¢¥l

w reduced word

Theorem [Brink, Howlett ‘93] Redyy (q) is a rational function

They show that the language of reduced words is regular.



. FULLY COMMUTATIVE ELEMENTS AND HEAPS



Fully commutative elements

Property : Given any two reduced decompositions of w, there
Is a sequence of braid relations which can be applied to
transform one into the other.

It is not trivial that one does not need the relations s? = 1
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Fully commutative elements

Property : Given any two reduced decompositions of w, there
Is a sequence of braid relations which can be applied to
transform one into the other.

It is not trivial that one does not need the relations s? = 1

Definition w is fully commutative if given two reduced
decompositions of w, there is a sequence of commutation
relations which can be applied to transform one into the other.

w is fully commutative < Red(w) forms a unique
commutation class.

Proposition [Stembridge '96] A commutation class of reduced
words corresponds to a FC element if and only no word in it
contains a braid word sts--- for a my > 3.

N——

mst
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Geometric interpretation

. Consider all hyperplane intersections where my; < 3
. The chamber which is the furthest away is not FC.

Neither are the chambers behind it.
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Geometric interpretation

1. Consider all hyperplane intersections where mg < 3
2. The chamber which is the furthest away is not FC.
3. Neither are the chambers behind it.




Previous work on FC elements

e The seminal combinatorics papers are [Stembridge '96,'98]:
1. First properties;

2. Classification of W with a finite number of FC elements;
3. Enumeration of these elements in each of these cases.

e [Fan '95] studies FC elements in the special case where
mg < 3 (the simply laced case).

e [Graham '95] shows that FC elements in any Coxeter group
W naturally index a basis of the (generalized) Temperley-Lieb
algebra of WW.

e Subsequent works [Greene,Shi,Cellini,Papi] relate FC
elements (and some related elements) to Kazhdan-Lusztig
polynomials.
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The series Redi“ (q) and WY (q) are rational functions.
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The series Redi“ (q) and WY (q) are rational functions.

Theorem [Biagioli-Jouhet-N. '12]

W an irreducible affine Coxeter group.
(i) Characterization of FC elements:;
(ii) Computation of W% (q);

(iii) (WF) >0 is ultimately periodic.
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The theorems

Theorem [N. '13] Let W be a Coxeter group.
The series Redi“ (q) and WY (q) are rational functions.

Theorem [Biagioli-Jouhet-N. '12]

W an irreducible affine Coxeter group.
(i) Characterization of FC elements:;
(ii) Computation of W% (q);

(iii) (WF) >0 is ultimately periodic.

~ ~

AFFINE TYPE H Zn_l ‘ Ch ‘ B, i1 ‘ 15n+2 ‘ EG ‘ E7 ‘ ég ‘ E,Eg

PEriODICITY || n |[n+1|(n+1)2n+1)|n+1| 4] 9 |5 | 1

Theorem [N. '13] The sequence (W “);>¢ is ultimately
periodic if and only if W is affine, F'C-finite or is one of two
exceptions, namely o7 and o 4. o o




Heaps

Let I" be a finite graph.

Definition: A I'-heap is a poset (H,<) withe: H — S
satisfying:

1. {s,t} € I' an edge = The h s.t. €(h) € {s,t} form a chain.
2. The poset (H, <) is the transitive closure of these chains.

S1 S9
59 51,7 S0



Heaps = Commutation classes

Theorem [Viennot '86] Bijection between:

(1) Commutation classes of words.
(72) I'-heaps.



Heaps = Commutation classes

Theorem [Viennot '86] Bijection between:
(1) Commutation classes of words.
(72) I'-heaps.

= Spell any word of the class; drop the letters; add edges
when the letter does not commute with previous ones.
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S0
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< Take the labels of each linear extension of H
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Heaps = Commutation classes

Theorem [Viennot '86] Bijection between:
(1) Commutation classes of words.
(72) I'-heaps.

= Spell any word of the class; drop the letters; add edges
when the letter does not commute with previous ones.
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Heaps = Commutation classes

Theorem [Viennot '86] Bijection between:
(1) Commutation classes of words.
(72) I'-heaps.

= Spell any word of the class; drop the letters; add edges
when the letter does not commute with previous ones.

QORI LK PS3515251
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< Take the labels of each linear extension of H



Heaps = Commutation classes

Theorem [Viennot '86] Bijection between:
(1) Commutation classes of words.
(72) I'-heaps.

= Spell any word of the class; drop the letters; add edges
when the letter does not commute with previous ones.

S1 S9
§15053525053515251 S1 ® s,
S0
S2
®
sy 517 50 53

< Take the labels of each linear extension of H



FC heaps = Special commutation classes

Let I' be a Coxeter graph. Recall that FC elements correspond
to commutation classes of reduced words avoiding sts- - -
N——
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Let I' be a Coxeter graph. Recall that FC elements correspond
to commutation classes of reduced words avoiding sts - - -
N——

mstZS
— let us call FC heaps the corresponding heaps.

Proposition [Stembridge '95] FC heaps on I' are characterized
by the following two restrictions:

(a) No covering relation (b) No convex chain of the form
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FC heaps = Special commutation classes

Let I' be a Coxeter graph. Recall that FC elements correspond
to commutation classes of reduced words avoiding sts - - -
\/_/

mstZS
— let us call FC heaps the corresponding heaps.

Proposition [Stembridge '95] FC heaps on I' are characterized
by the following two restrictions:

(a) No covering relation (b) No convex chain of the form

S S
IS tés Imst
¢ S

Summary
FC element w <—% Heap H satisfying (a) and (b)

Length {(w)  <—% Number of elements |H|




Rationality of Redi“(q) and W¥%(q).

Let 1V be a Coxeter group with I' its graph.

e To determine if a word is a FC reduced word, construct the
heap letter by letter. It turns out that only “finite information”
about the heap needs to be stored.

Theorem The language Red{fVC of FC reduced words can be
recognized by a finite automaton.

= it length generating function Redfvc(q) IS rational.



Rationality of Redi“(q) and W¥%(q).

Let 1V be a Coxeter group with I' its graph.

e To determine if a word is a FC reduced word, construct the
heap letter by letter. It turns out that only “finite information”
about the heap needs to be stored.

Theorem The language Red{fVC of FC reduced words can be
recognized by a finite automaton.

= it length generating function Redﬁ/c(q) IS rational.

e Fix a total order of S, and associate to each I'-commutation
class its lexicographically minimal element. Now the language
Shortlex(I") of such words is known [Anisimov-Knuth '79] to
be regular, and we get

Corollary Shortlex(T") N Red© is regular.
= its length generating function W' (q) is rational.



Il1l. FC ELEMENTS IN TYPE A



Affine permutations

S5;85i+18; = Si+15iSi+1

S;S; = 858, ‘] — Z‘ > 1



Affine permutations

S$49¢4+157 — Si+15i5i+1

S;8; = 858, ‘j — Z‘ > 1

Isomorphic to the group of permutations o of Z such that:
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Affine permutations

S$49¢4+157 — Si+15i5i+1

S;8; = 858, ‘j — Z‘ > 1

Isomorphic to the group of permutations o of Z such that:

(i)VieZo(t+n)=0c(i)+n, and

(i) 2oy () =22,y ¢

.., 13,-12)-14, - 1,@ 8.} 10@21, —4{—6, 7.25.00-2,11,29.4, . ..
o(1)o(2)o(3)c(4

Theorem [Green '01] Fully commutative elements of type

A,,_1 correspond to 321-avoiding permutations.

This generalizes [Billey,Jockush,Stanley '93] for type A,,_1, i.e.
the symmetric group 5,,.



Periodicity

—~

Theorem [Hanusa-Jones '09] The sequence (A}, ;)i>0 is
ultimately periodic of period n.

AFC(q) =1+ 3¢+ 6q2 + 63 + 6q* + - -

AFC(q) = 14 4q +10¢® + 16¢> + 18q* + 16¢> 4 18q° + - --

- NAVAVA" VAVAY - AVAVAVAY,
A, NAVAVA VAV AVAVAVAY,
v

:
:
S
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FC heaps in type A

— FC heaps must avoid I

Sq Si Si4+1 Si+2 Si Si+1 Si+2



FC heaps in type A

— FC heaps must avoid I

Sy Srlz Si+1 Sz'l+2 Sz Sit+1 sz-I+2
Proposition FC heaps are characterized by:
For all 4, H s, s, .1 1s @ chain with alternating labels




From heaps to paths

Sn—1
v A
L R
Path R
0 n

e No labels needed at height 0.
e Size of the heap — Area under the path.



From heaps to paths

O = Paths > 0, length n:
e Starting height = Ending height.
e Horizontal steps at height A > 0 are labeled L or R.
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e Starting height = Ending height.
e Horizontal steps at height h > 0 are labeled L or R.

Theorem [BJN '12] This is a bijection between

1. FC elements (heaps) of A,,_; and
2. O



From heaps to paths

O = Paths > 0, length n:
e Starting height = Ending height.
e Horizontal steps at height h > 0 are labeled L or R.

Theorem [BJN '12] This is a bijection between

1. FC elements (heaps) of A,,_; and
2. OF \{paths at constant height A > 0 with all steps having
the same label L or R}.

The non-trivial part of the proof is to show surjectivity.



From heaps to paths

O = Paths > 0, length n:
e Starting height = Ending height.
e Horizontal steps at height h > 0 are labeled L or R.

Theorem [BJN '12] This is a bijection between

1. FC elements (heaps) of A,,_; and
2. OF \{paths at constant height h > 0 with all steps having
the same label L or R}.

The non-trivial part of the proof is to show surjectivity.

Periodicity: for [ large enough, shift the paths up by 1 unit:
this Is bijective, and the area under the path increases by n.
— that the length function is ultimately periodic of period n.



Enumerative results

e “Large enough length” 7 Shifting is not 4 (n odd)

bijective if the starting path P has a

horizontal step at height h =0
= Area(P) <lp=|(n—1)/2]|(n+1)/2]. A

0 n

Proposition: Periodicity starts exactly at length [y + 1.



Enumerative results

e “Large enough length” 7 Shifting is not 4 (n odd)

bijective if the starting path P has a

horizontal step at height h =0
= Area(P) <lp=|(n—1)/2]|(n+1)/2]. A

0 n

Proposition: Periodicity starts exactly at length [ + 1.

AFC
Y Xu(g)z" =Y () (1 + qa” a(gj) (wq)) Y*(z) =1+ 2Y*(x) + qz(Y*(z) — 1)Y*(qz)




Minimal period

Theorem [Jouhet, N. '13] The length function of FC elements
in type A,,_1 has ultimate minimal period:

n if n has at least two distinct prime factors

k—1 k

<
D ifn=p

\

Avgc(Q):1—|—3q—|—6q2—|—6q3—|—6q4_|_...
AFC(q) =1+ 4q + 10¢% + 16¢> 4 18q* + 16q° + 18¢°® + - --

AFC(q) =1 4 5q + 15¢2 + 30¢° + 45¢
+50q°® + 50q° + 5097 + 50q® + 50q° + - - -

AFC(q) =1 + 6 + 21¢% + 504 + 90¢* + 126¢° + 1464°
+150q7 4 156q® + 152q° + 156q'® + 150q'" + 158q"?
+150q"? +-1569'* + 152q"° + 156q'° +150q'" + 158q"®



V. FC ELEMENTS IN OTHER AFFINE TYPES



Type C

Two families of heaps survive for large enough length:

9 Finite factors of

Path




Type C
Here a period is n + 1. The minimal period can be determined

also: it is the largest odd number dividing n + 1 [JN "13].

The full characterization of FC elements is more complex, as is
the generating function.

Types B and D very similar.

A4
A




Exceptional types
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