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Sorting Algorithms in Practice

Many inventions
by algorithms comunity

vs. Few methods
successful in practice

C
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
Quicksort
+Mergesort variant as stable sort
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Sorting methods listed on Wikipedia Sorting methods of standard libraries for random access data
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History of Quicksort in Practice

1961,62 Hoare: first publication, average case analysis

1969 Singleton: median-of-three & Insertionsort on small subarrays

1975-78 Sedgewick: detailled analysis of many optimizations

1993 Bentley, McIlroy: Engineering a Sort Function

1997 Musser: O(n logn) worst case by bounded recursion depth

; Basic algorithm settled since 1961; latest tweaks from 1990’s.
Since then: Almost identical in all programming libraries!

Until 2009: Java 7 switches to a new dual pivot Quicksort!

Sept. 2009 Vladimir Yaroslavskiy announced algorithm on Java core library mailing
list ; July 2011 public release of Java 7 with Yaroslavskiy’s Quicksort.

1961 1969 1975 ’78 1993 1997
’62 ’77

today

2009
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Running Time Experiments

Why switch to new, unknown algorithm?

Because it is faster!
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remains true for basic variants of algorithms: vs. !
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Dual Pivot Quicksort

High Level Algorithm:

1 Partition array arround two pivots p 6 q.
2 Sort 3 subarrays recursively.

How to do partitioning?

1 For each element x, determine its class

small for x < p

medium for p < x < q

large for q < x

by comparing x to p and/or q

2 Arrange elements according to classes p q
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Dual Pivot Quicksort – Previous Work

Robert Sedgewick, 1975

in-place dual pivot Quicksort implementation

more comparisons and swaps than classic Quicksort

Pascal Hennequin, 1991

comparisons for list-based Quicksort with r pivots

r = 2 ; same #comparisons as classic Quicksort
in one partitioning step: 5

3
comparisons per element

r > 2 ; very small savings, but complicated partitioning

; Using two pivots does not pay, and ...

... no theoretical explanation for impressive speedup.
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Overview of talk

In this talk:

We explain, why the new QS variant can be benefitcal even from a
theoretical point of view,

by providing a detailed average-case analysis (which carves out the
reason for its success),

this way provide more insight than running time measurements.

Additionally, we discuss variations of the algorithm aiming for further
improvements.

. . . stay tuned
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Java 7’s Dual Pivot Quicksort – Example

Yaroslavskiy’s Dual Pivot Quicksort
(used in Oracle’s Java 7 Arrays.sort(int[]))

p q

3 5 1 8 4 7 2 9 6

Select two elements as pivots.

Invariant: < p `
→

> qg

←
p 6 ◦ 6 q k

→
?
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k

A[k] is medium ; go on
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` k
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Java 7’s Dual Pivot Quicksort – Example

Yaroslavskiy’s Dual Pivot Quicksort
(used in Oracle’s Java 7 Arrays.sort(int[]))
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g` k
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Java 7’s Dual Pivot Quicksort – Example

Yaroslavskiy’s Dual Pivot Quicksort
(used in Oracle’s Java 7 Arrays.sort(int[]))

2 1 3 5 4 6 8 9 7

g` k

g and k have crossed!
Swap pivots in place
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Java 7’s Dual Pivot Quicksort – Example

Yaroslavskiy’s Dual Pivot Quicksort
(used in Oracle’s Java 7 Arrays.sort(int[]))

2 1 3 5 4 6 8 9 7

Partitioning done!

Invariant: < p `
→

> qg

←
p 6 ◦ 6 q k

→
?
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Java 7’s Dual Pivot Quicksort – Example

Yaroslavskiy’s Dual Pivot Quicksort
(used in Oracle’s Java 7 Arrays.sort(int[]))

2 1 3 5 4 6 8 9 7

Recursively sort three sublists.

Invariant: < p `
→

> qg

←
p 6 ◦ 6 q k

→
?
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Java 7’s Dual Pivot Quicksort – Example

Yaroslavskiy’s Dual Pivot Quicksort
(used in Oracle’s Java 7 Arrays.sort(int[]))

1 2 3 4 5 6 7 8 9

Done.

Invariant: < p `
→

> qg

←
p 6 ◦ 6 q k

→
?
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Dual Pivot Quicksort – Comparison Costs

How many comparisons to determine classes ( small , medium or large ) ?

Assume, we first compare x with p.
; small elements need 1, others 2 comparisons

on average: 13 of all elements are small
; 1

3 · 1+
2
3 · 2 =

5
3 comparisons per element

if inputs are uniform random permutations, knowledge about x 6= y
does not tell us whether y is small, medium or large.

; Any partitioning method needs at least
5
3(n− 2) ∼ 20

12n comparisons on average?

No!
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Beating the “Lower Bound”

∼ 20
12n comparisons only needed,

if there is one comparison location (implying fixed order like "first p
then q");
only then checks for x and y are independent

But: Can have several comparison locations!

Here: Assume two locations C1 and C2 s. t.

C1 first compares with p.

C2 first compares with q.

C1 executed often, iff p is large.

C2 executed often, iff q is small.

; C1 executed often
iff many small elements
iff good chance that C1 needs only one comparison

(C2 similar)

; less comparisons than 5
3 per elements on average
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Yaroslavskiy’s Quicksort

DUALPIVOTQUICKSORTYAROSLAVSKIY(A, left, right)

1 if right − left > 1
2 p := A[left]; q := A[right]
3 if p > q then Swap p and q end if
4 ` := left + 1; g := right − 1; k := `
5 while k 6 g
6 if A[k] < p
7 SwapA[k] andA[`] ; ` := `+ 1
8 else if A[k] > q
9 while A[g] > q and k < g do g := g− 1 end while
10 SwapA[k] andA[g] ; g := g− 1
11 if A[k] < p
12 SwapA[k] andA[`] ; ` := `+ 1
13 end if
14 end if
15 k := k+ 1
16 end while
17 ` := `− 1; g := g+ 1
18 SwapA[left] andA[`] ; SwapA[right] andA[g]
19 DUALPIVOTQUICKSORTYAROSLAVSKIY(A, left , `− 1)
20 DUALPIVOTQUICKSORTYAROSLAVSKIY(A, `+ 1,g− 1)
21 DUALPIVOTQUICKSORTYAROSLAVSKIY(A,g+ 1, right )
22 end if
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Yaroslavskiy’s Quicksort
DUALPIVOTQUICKSORTYAROSLAVSKIY(A, left, right)

1 if right − left > 1
2 p := A[left]; q := A[right]
3 if p > q then Swap p and q end if
4 ` := left + 1; g := right − 1; k := `
5 while k 6 g
6 Ck if A[k] < p
7 SwapA[k] andA[`] ; ` := `+ 1
8 elseC′

k if A[k] > q
9 Cg while A[g] > q and k < g do g := g− 1 end while
10 SwapA[k] andA[g] ; g := g− 1
11 C′

g if A[k] < p
12 SwapA[k] andA[`] ; ` := `+ 1
13 end if
14 end if
15 k := k+ 1
16 end while
17 ` := `− 1; g := g+ 1
18 SwapA[left] andA[`] ; SwapA[right] andA[g]
19 DUALPIVOTQUICKSORTYAROSLAVSKIY(A, left , `− 1)
20 DUALPIVOTQUICKSORTYAROSLAVSKIY(A, `+ 1,g− 1)
21 DUALPIVOTQUICKSORTYAROSLAVSKIY(A,g+ 1, right )
22 end if

2 comparison locations

Ck handles pointer k

Cg handles pointer g

Ck first checks < p

C ′k if needed > q

Cg first checks > q

C ′g if needed < p
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Analysis of Yaroslavskiy’s Algorithm

In this talk:

only number of comparisons (swaps similar)
only leading term asymptotics

 all exact results
in paper

Cn expected #comparisons to sort random permutation of {1, . . . , n}

Cn satisfies recurrence relation

Cn = cn + 2
n(n−1)

∑
16p<q6n

(
Cp−1 + Cq−p−1 + Cn−q

)
,

with cn expected #comparisons in first partitioning step

recurrence solvable by standard methods

; linear cn ∼ a · n yields Cn ∼ 6
5a · n lnn.

; need to compute cn
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Analysis of Yaroslavskiy’s Algorithm

first comparison for all elements (at Ck or Cg )
; ∼ n comparisons

second comparison for some elements at C′
k resp. C′

g

. . . but how often are C ′k resp. C ′g reached?

C ′k : all non- small elements reached by pointer k.

C ′g : all non- large elements reached by pointer g.

second comparison for medium elements not avoidable
; ∼ 1

3n comparisons in expectation

; it remains to count:
large elements reached by k and
small elements reached by g.
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Analysis of Yaroslavskiy’s Algorithm

Second comparisons for small and large elements?
Depends on location!

C ′k ; l@K: number of large elements at positions K.

C ′g ; s@G: number of small elements at positions G.

Recall invariant: < p `
→

> qg

←
p 6 ◦ 6 q k

→
?

; k and g cross at (rank of) q

p q

positions K = {2, . . . , q− 1} G = {q, . . . , n− 1}

l@K = 3 s@G = 2

for given p and q, l@K hypergeometrically distributed
; E [l@K |p, q] = (n− q)q−2n−2
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Analysis of Yaroslavskiy’s Algorithm

law of total expectation:

E [l@K] =
∑

16p<q6n

Pr[pivots (p, q)] · (n− q)q−2n−2 ∼ 1
6n

Similarly: E [s@G] ∼ 1
12n.

Summing up contributions:

cn ∼ n first comparisons

+ 1
3n medium elements

+ 1
6n large elements at C ′k

+ 1
12n small elements at C ′g

= 19
12 n

Recall: “lower bound” was 2012n.Markus E. Nebel Java 7’s Dual Pivot Quicksort 2013/12/05 15 / 43



Lower Bound on Comparisons

How clever can dual pivot paritioning be?

For lower bound, assume

random permutation model
pivots are selected uniformly
an oracle tells us, whether more small or more large elements occur

; 1 comparison for frequent extreme elements
2 comparisons for middle and rare extreme elements

(n− 2) + 2
n(n−1)

∑
16p<q6n

(
(q− p− 1) + min{p− 1, n− q}

)
∼ 3
2n = 18

12n

Even with unrealistic oracle, not much better than Yaroslavskiy
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Gathering Results

Comparisons:

Yaroslavskiy needs ∼ 6
5
· 19
12
n lnn = 1.9n lnn on average.

Classic Quicksort needs ∼ 2n lnn comparisons!

Interestingly, the same partitioning yields a Quickselect algorithm
needing a larger number of comparisons on average!

Swaps:

∼ 0.6n lnn swaps for Yaroslavskiy’s algorithm vs.

∼ 0.3n lnn swaps for classic Quicksort
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Engineering Quicksort

Analogous to classic Quicksort

switch to InsertionSort for subproblems of size 6 w,

choose pivots from random sample of input

median for classic Quicksort

tertiles for dual pivot Quicksort

or asymmetric order statistics?

Here: sample of constant size k

choose pivots, such that t1 elements < p,
t2 elements between p and q,
t3 = k− 2− t1 − t2 larger > q

Allows to “push” pivot towards desired order statistic of list
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Control Flow Graph of Partitioning Loop

1 bc: 3
k 6 g

2 bc: 7

t := A[k];
t < p

4 bc: 3
t > q

3 bc: 12

A[k] := A[`];
A[`] := t;
` := `+ 1;

5 bc: 5

A[g] > q

6 bc: 3
k < g

7 bc: 2
g := g− 1;

8 bc: 5

A[g] < p

9 bc: 14

A[k] := A[`];
A[`] := A[g]
` := `+ 1;

10 bc: 6

A[k] := A[g]

11 bc: 5

A[g] := t;
g := g− 1;

12 bc: 2
k := k+ 1

no

yes

no

yes

no

yes yes

yes

no
no

yes no
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Control Flow Graph of Partitioning Loop

1 bc: 3
k 6 g

2 bc: 7

t := A[k];
t < p

4 bc: 3
t > q

3 bc: 12

A[k] := A[`];
A[`] := t;
` := `+ 1;

5 bc: 5

A[g] > q

6 bc: 3
k < g

7 bc: 2
g := g− 1;

8 bc: 5

A[g] < p

9 bc: 14

A[k] := A[`];
A[`] := A[g]
` := `+ 1;

10 bc: 6

A[k] := A[g]

11 bc: 5

A[g] := t;
g := g− 1;

12 bc: 2
k := k+ 1

no

yes

no

yes

no

yes yes

yes

no
no

yes no

Cycle 1

A[k]: small

A[g]: —

∆(g− k): 1

Bytecode
Instructions: 24
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Control Flow Graph of Partitioning Loop

1 bc: 3
k 6 g

2 bc: 7
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t < p

4 bc: 3
t > q
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A[`] := t;
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5 bc: 5
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6 bc: 3
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A[g] < p

9 bc: 14

A[k] := A[`];
A[`] := A[g]
` := `+ 1;

10 bc: 6

A[k] := A[g]

11 bc: 5

A[g] := t;
g := g− 1;

12 bc: 2
k := k+ 1

no

yes

no

yes

no

yes yes

yes

no
no

yes no

Cycle 2

A[k]: medium

A[g]: —

∆(g− k): 1

Bytecode
Instructions: 15
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Control Flow Graph of Partitioning Loop

1 bc: 3
k 6 g

2 bc: 7

t := A[k];
t < p

4 bc: 3
t > q

3 bc: 12

A[k] := A[`];
A[`] := t;
` := `+ 1;

5 bc: 5

A[g] > q

6 bc: 3
k < g

7 bc: 2
g := g− 1;

8 bc: 5

A[g] < p

9 bc: 14

A[k] := A[`];
A[`] := A[g]
` := `+ 1;

10 bc: 6

A[k] := A[g]

11 bc: 5

A[g] := t;
g := g− 1;

12 bc: 2
k := k+ 1

no

yes

no

yes

no

yes yes

yes

no
no

yes no

Cycle 3

A[k]: large

A[g]: large

∆(g− k): 1

Bytecode
Instructions: 10
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Control Flow Graph of Partitioning Loop

1 bc: 3
k 6 g

2 bc: 7

t := A[k];
t < p

4 bc: 3
t > q

3 bc: 12

A[k] := A[`];
A[`] := t;
` := `+ 1;

5 bc: 5

A[g] > q

6 bc: 3
k < g

7 bc: 2
g := g− 1;

8 bc: 5

A[g] < p

9 bc: 14

A[k] := A[`];
A[`] := A[g]
` := `+ 1;

10 bc: 6

A[k] := A[g]

11 bc: 5

A[g] := t;
g := g− 1;

12 bc: 2
k := k+ 1
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Cycle 4

A[k]: large

A[g]: small

∆(g− k): 2

Bytecode
Instructions: 44
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Control Flow Graph of Partitioning Loop

1 bc: 3
k 6 g

2 bc: 7

t := A[k];
t < p

4 bc: 3
t > q

3 bc: 12

A[k] := A[`];
A[`] := t;
` := `+ 1;

5 bc: 5

A[g] > q
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A[k] := A[`];
A[`] := A[g]
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12 bc: 2
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no
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Cycle 5

A[k]: large

A[g]: medium

∆(g− k): 2

Bytecode
Instructions: 36
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Asymmetry

1 bc: 3
k 6 g

2 bc: 7

t := A[k];
t < p

4 bc: 3
t > q

3 bc: 12

A[k] := A[`];
A[`] := t;
` := `+ 1;

5 bc: 5

A[g] > q

6 bc: 3
k < g

7 bc: 2
g := g− 1;

8 bc: 5

A[g] < p

9 bc: 14

A[k] := A[`];
A[`] := A[g]
` := `+ 1;

10 bc: 6

A[k] := A[g]

11 bc: 5

A[g] := t;
g := g− 1;

12 bc: 2
k := k+ 1

no

yes

no

yes

no

yes yes

yes

no
no

yes no

Algorithm is asymmetric:

cycles have different cost
; would rather execute
cheap ones often

cycles chosen by classes
small , medium or large

probability for classes depends
on pivot values

; Maybe we can “influence pivot values accordingly”?
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Pivot Sampling

Well-known optimization for classic Quicksort: median-of-three
; pivot closer to median of whole list

In JRE7 Quicksort implementation: natural extension for 2 pivots:

tertiles-of-five
; pivots closer to tertiles of whole list

9 other possibilities to pick p and q out of 5 elements:
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Optimizing Pivot Sampling

Which are “good” pivot selection schemes?
Is the symmetric choice best possible?

Need objective function to optimize

Typical approaches to judge efficiency:

A Count number of basic operations.
(Here: number of executed Java Bytecode instructions.)

B Measure total running time.
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Optimizing Pivot Sampling

Relative performance of pivot sampling compared to tertiles-of-five:
Pivot Selection Scheme A1 B2

JRE7
+5.14% +0.80%

JRE7(1,3) −1.85% −0.44%

+3.34% −0.42%

— (stack overflow!) +10.6%

+2.48% +2.73%

+11.3% +3.31%

+12.7% +3.29%

+16.4% +2.48%

+39.0% +5.87%

1Average number of executed bytecodes on almost sorted lists of length 105.
2Average running time on random permutations of length 106.
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Pivot Sampling

3
14n

1
7n

1
7n

1
7n

1
7n

3
14n

P Q

V1 V2 V3 V4 V5

Figure : The five sample elements in Oracle’s Java 7 implementation of
Yaroslavskiy’s dual-pivot Quicksort are chosen such that their distances are
approximately as given above.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t1 t2 t3P Q

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10V11

Figure : Location of the sample in our implementation of generalized pivot
sampling, here with exemplary parameters t = (3, 2, 4). Only the non-shaded
region is subject to partitioning with Yaroslavskiy’s method.
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Pivot Sampling

t1 t2 t3

P Qs s s s sm m m m m l l l l l l l l

P Qs s s s s m m m m m l l l l l l l l

left subarray middle subarray right subarray

Figure : First row: State of the array just after partitioning the ordinary elements.
The letters indicate whether the element at this location is smaller (s), between
(m) or larger (l) than the two pivots P and Q. Sample elements are shaded .
Second row: State of the array after pivots and sample parts have been moved to
their partition. The “rubber bands” indicate moved regions of the array.
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Pivot Sampling

Randomness preservation:
As the sample was sorted, the left and middle subarrays have sorted
prefixes of length t1 and t2 followed by a random permutation of the
remaining elements. Similarly, the right subarray has a sorted suffix
of t3 elements. Hence, except for the trivial case t = 0, these
subarrays are not randomly ordered!

Vital observation: sorted part always lies completely inside the
sample range for the next partitioning phase ; non-randomness
only affects sorting of the sample, it does not affect partitioning.
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Pivot Sampling

Furthermore:
For our special case of a fully sorted prefix or suffix of length s > 1
and a fully random rest, we can simply use InsertionSort where the
first s iterations of the outer loop are skipped. Our InsertionSort
implementations then simply accept s as an additional parameter.

We precisely quantify the savings resulting from skipping the first s
iterations: Apart from per-call overhead, we save exactly what it
would have costed us to sort this prefix/suffix with InsertionSort.
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Analysis

We assume the i. i. d. uniform model, i. e. the array is initially filled
with n i. i. d. uniformly in (0, 1) distributed random variables
U1, . . . , Un.

Then, we choose the first kl and last kr elements as the sample
V = (U1, . . . , Ukl , Un−kr+1, . . . , Un), from which the pivots
P := V(t1+1) and Q := V(t1+t2+2) are selected.

For D the spacings induced by P and Q on the unit interval [0, 1]:

D := (D1, D2, D3) := (P, Q− P, 1−Q) .

By definition of our pivot sampling method, (D1, D2, D3) are the
spacings induced by two order statistics V(t1+1) and V(t1+t2+2) of k
i. i. d. uniform random variables V1, . . . , Vn, so D = (D1,D2,D3) is
Dirichlet Dir(t1 + 1, t2 + 1, t3 + 1) distributed.
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Analysis

P and Q (equivalently spacings D) ; probability for an ordinary element
U to be small, medium or large, respectively:

U ∈ (0, P) ; small (with probability D1);

U ∈ (P,Q) ; medium (with probability D2;

U ∈ (Q, 1) ; large (with probability D3;

Also note that the event of equal keys has probability 0.

Partition sizes: result of n− k independent repetitions of this experiment,
so I = (I1, I2, I3) (number of small, medium resp. large elements) is
multinomially Mult(n− k;D1,D2,D3) distributed.

Note that the subproblem sizes J = (J1, J2, J3) including the sampled-out
elements are completely determined by I via J = I + t.
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Analysis

By this process, the first partitioning phase only determines

values (of pivots);

ranks (of pivots);

subproblem size.

About none of the other elements is known more than into which
subproblem it belongs ; repeat this same process with the same
distribution for subproblems on their respective subinterval of (0, 1).
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Analysis

Denoting by Tn the costs of the first partitioning step, we obtain the
following distributional recurrence for the family (Cn)n∈N of random
variables:

Cn
D
=

{
Tn + CJ1 + C

′
J2

+ C ′′J3 , for n > w;
Wn, for n 6 w.

(1)

Here Wn denotes the cost of InsertionSorting a random permutation of
size n, (C ′j)j∈N and (C ′′j )j∈N are independent copies of (Cj)j∈N
(identically distributed, totally independent, independent of Tn).
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Analysis

Caution: Before recursion not 100% accurate: The savings for
InsertionSort on already sorted parts of the sample are not considered!

However,
for most interesting cost measures, the resulting savings only depend
on the length s of this sorted part, not on the length of the whole
array;

denoting these savings by Es, we pay Et1 less for calls to left
subarrays, Et2 less for middle calls and Et3 less for right subarrays;

discounting the future savings Et := Et1 + Et2 + Et3 of all three
recursive calls directly in the current call, we can the total costs in
the form given above, with a reduced toll function T̃n.
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Analysis

Taking expectations on both sides in (1), we find a recurrence relation for
the expected costs E[Cn]:

E[Cn] =


E[Tn] +

∑
j=(j1,j2,j3)

j1+j2+j3=n−2

P(J = j)
(
E[Cj1 ] + E[Cj2 ] + E[Cj3 ]

)
, for n > w;

E[Wn], for n 6 w.

(2)

The distribution of J has been given above; using well-known fact on
multinomial distribution we obtain:

P(J = j) =

(
j1
t1

)(
j2
t2

)(
j3
t3

)(
n
k

) .
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Solving the recurrence

Theorem (Martínez and Roura 2001)

Let Fn be recursively defined by

Fn =

bn, for 0 6 n < N;

tn +

n−1∑
j=0

wn,j Fj, for n > N
(3)

where the toll function satisfies tn ∼ Knα logβ n as n→∞ for constants K, α > 0 and
β > −1. Assume there exists a function w : [0, 1]→ R, such that

n−1∑
j=0

∣∣∣∣wn,j −

∫ (j+1)/n
j/n

w(z) dz

∣∣∣∣ = O(n−d) (4)

for a constant d > 0. With H := 1−

∫1
0

zαw(z)dz, we have the following cases:

1 If H > 0, then Fn ∼
tn

H
.

2 If H = 0, then Fn ∼
tn lnn
H̃

with H̃ = −(β+ 1)

∫1
0

zα ln zw(z)dz.

3 If H < 0, then Fn ∼ Θ(nc) for the unique c ∈ R with
∫1
0

zcw(z)dz = 1.
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Solving the recurrence

Recurrence in the form of (2): We start again with the probabilistic
equation above and condition the terms CJ1 , CJ2 and CJ3 on J. For
n > w, this gives

Cn = Tn +

3∑
l=1

n−2∑
j=0

1{Jl=j}Cj .

Taking expectations on both sides and exploiting independence yields

ECn = E Tn +

3∑
l=1

n−2∑
j=0

E[1{Jl=j}]E[Cj]

= E Tn +

n−2∑
j=0

(
P(J1 = j) + P(J2 = j) + P(J3 = j)

)
ECj ,

which is a recurrence in CMT style with weights

wn,j = P(J1 = j) + P(J2 = j) + P(J3 = j) .
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Solving the recurrence

Note that
the probabilities P(Jl = j) implicitly depend on n;

P(Jl = j) = P(Il = j− tl) for l = 1, 2, 3, can be computed using that
the marginal distribution of Il is Bin(n− k,Dl),

yielding P(Il = i) =
(
N
i

) (tl+1)i(k−tl)N−i

(k+1)N
.

Shape function according to (3): With

w(z) =

3∑
l=1

(k− tl)

(
k

tl

)
ztl(1− z)k−tl−1

we find
∑n−1
j=0

∣∣∣∣wn,j −
∫(j+1)/n
j/n

w(z) dz

∣∣∣∣ = O(n−1) and CMT applies

(case 2) with α = 1, β = 0 and K = a.
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Solving the recurrence

This way we find:

Theorem
Let E[Cn] be a sequence of numbers satisfying recurrence (2) for some
constant w > k and let the toll function E[Tn] be of the form
E[Tn] = an+O(1) for a constant a. Then

E[Cn] = a · g(k, t1, t2, t3) · n lnn + O(n) ,

where g is given by

g(k, t1, t2, t3) =

(
−

3∑
i=1

ti + 1

k+ 1
(Hti+1 −Hk+1)

)−1

.

⇒ results for number of comparisons, swaps and executed Java bytecodes
(leading term independent of w).
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Optimal Pivot Ranks

Challenge: Hard to separate optimal pivot ranks from optimal sample
size.

Resort: Consider family of algorithms with (k(j))j∈N, and (t(j)i )j∈N for
i = 1, 2, 3 a sequences of non-negative integers which fulfill
k(j) = t(j)1 + t(j)2 + t(j)3 for every j ∈ N. Moreover, assume k(j) →∞ and
t(j)i /k

(j) → τi with τi ∈ [0, 1] for i = 1, 2, 3 as j→∞. Note that by
definition we have τ1 + τ2 + τ3 = 1.

For each j ∈ N, we can apply our findings for the expected number of
comparisons, swaps and bytecodes respectively using parameters k(j)

and t(j) ; limiting behaviour of costs.

Markus E. Nebel Java 7’s Dual Pivot Quicksort 2013/12/05 38 / 43



Optimal Pivot Ranks

Challenge: Hard to separate optimal pivot ranks from optimal sample
size.

Resort: Consider family of algorithms with (k(j))j∈N, and (t(j)i )j∈N for
i = 1, 2, 3 a sequences of non-negative integers which fulfill
k(j) = t(j)1 + t(j)2 + t(j)3 for every j ∈ N. Moreover, assume k(j) →∞ and
t(j)i /k

(j) → τi with τi ∈ [0, 1] for i = 1, 2, 3 as j→∞. Note that by
definition we have τ1 + τ2 + τ3 = 1.

For each j ∈ N, we can apply our findings for the expected number of
comparisons, swaps and bytecodes respectively using parameters k(j)

and t(j) ; limiting behaviour of costs.

Markus E. Nebel Java 7’s Dual Pivot Quicksort 2013/12/05 38 / 43



Optimal Pivot Ranks

We find that the overall number of comparisons, swaps resp. bytecodes
converge to

a∗C

−
∑3
i=1 τi ln(τi)

,
a∗S

−
∑3
i=1 τi ln(τi)

resp.
a∗BC

−
∑3
i=1 τi ln(τi)

.

with

a(j)C → a∗C := 1+ τ1 + τ2 + (τ1 + τ2)(τ3 − τ1)

a(j)S → a∗S := τ1 + (τ1 + τ2)τ3

a(j)BC → a∗BC := 10+ 13τ1 + 5τ2 + 11(τ1 + τ2)τ3 + τ1(τ1 + τ2)

the “constants” showing up in before theorem.
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Optimal Pivot Ranks

Optimal choices: The number of comparisons is minimized for

τ∗C ≈ (0.428846, 0.268774, 0.302380) .

For this choice, the expected number of comparisons used is
asymptotically 1.4931n lnn. The minimal asymptotic number of executed
bytecodes of roughly 16.3833n lnn is obtained for

τ∗BC ≈ (0.206772, 0.348562, 0.444666) .

For swaps no minimum is attained in the open simplex; the
corresponding coefficient approaches 0 as τ1 and τ2 simultaneously go to
0.

Note that
the optimal choices heavily differ depending on the employed cost
measure;
the minima differ significantly from the symmetric choice
τ = (13 ,

1
3 ,
1
3).
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Optimal Pivot Ranks

Figure : The leading term coefficient of the expected number of bytecodes used
by generalized Yaroslavskiy for different sample sizes k (x-axis). Blue points
show the optimal order statistics, purple points given the cost when choosing the
tertiles of the sample.
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Outlook and Conclusion

We also have results for k = 5 and corresponding lower order terms
dealing with comparison (also in InsertionSort and SampleSort),
swaps and write accesses;
there w come into play.

Thus, Java 7th quicksort is a perfect textbook example to demonstrate
how well methods from AofA are developed;
the depth of results obtainable (precise expectations, distributions,
covariances, ...) by those methods;
how AofA can guide engineering of an algorithm (pivot sampling,
switch to insertionsort, ...).

However, our sophisticated machinery fails to explain the practical
efficiency of Yaroslavskiy’s algorithms (presumably) because of a lacking
access to

branch mispredictions and
cache misses.
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Thank you very much for your attention!
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