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The Associahedron

The Tamari lattice can be realized by the graph of the Associahedron

[Dov Tamari, Monoïdes préordonnés et chaînes de Malcev, PhD thesis,
Université de Paris, (1951)]



The Associahedron

The Tamari lattice can be realized by the graph of the Associahedron

From [Ceballos, Santos, Ziegler, Many non-equivalent realizations of the
Associahedron (2014)]

Stasheff (’63), Haiman (’84), Lee (’89), Gelfand-Kapranov-Zelevinsky (’94),

Chapoton-Fomin-Zelevinsky (’02), Rote-Santos-Streinu (’03), Loday (’04), Hohlweg-Lange (’07),

Postnikov (’09), Ceballos-Santos-Ziegler (’14)... among many others.



The m-Tamari lattice

Fuss-Catalan path: lattice path from (0,0) to (mn,n) that stays weakly
above the main diagonal.

m-Tamari lattice: poset (actually a lattice) on Fuss-Catalan paths
determined by this following covering relation

[François Bergeron and Louis-François Préville-Ratelle. Higher trivariate
diagonal harmonics via generalized Tamari posets, (2012)]
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The m-Tamari lattice

1-Tamari n = 4 4-Tamari n = 3 2-Tamari n = 4

[François Bergeron. Combinatorics of r-Dyck paths, r-Parking functions,
and the r-Tamari lattices (2012)]

There has also been recently a lot of work on
geometric (or polytopal) realizations of the
associahedron (the Tamari poset for r = 1).
This leads to the natural question of describing
similar constructions for all r-Tamari posets.
Figure 6 suggests a tantalizing outlook on this.
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The ν-Tamari lattice

ν-Tamari lattice: similar on paths above a given lattice path ν...

[Louis-François Préville-Ratelle and Xavier Viennot, An extension of
Tamari lattices (2014)]
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The associahedral triangulation

Consider the product of two simplices

∆n × ∆n = conv
¦

(ei,ej): 0 ≤ i, j ≤ n
©

.

We want to triangulate (subdivide into
simplicies) the sub-polytope

Cn = conv
¦

(ei,ej): 0 ≤ i ≤ j ≤ n
©
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The associahedral triangulation

The cells: indexed by triangulations of an (n + 2)-gon

In this example, the cell is:

conv
�

(e0,e0), (e0,e2), (e0,e4), (e1,e1), . . . , (e4,e4)
	

Alternatively: bipartite non-crossing trees on [n] t [n].

Fact

É These cells triangulate the polytope Cn ⊂ ∆n × ∆n

É This triangulation is dual to an associahedron.

É The triangulation is regular and flag.
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The associahedral triangulation

Example

The 1-dimensional associahedron is the dual of a triangulation of a
4-dimensional polytope C2 ⊂ ∆2 × ∆2.

Why do you want to draw a 1-dim edge in 4 dimensions?

This might look like a disadvantage.

But this approach is actually very powerful.
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(The Cayley trick)

Theorem (The Cayley trick [Huber-Rambau-Santos ’00])
§

triangulations
of ∆n ×∆m

ª

Cayley trick
←−−−−−−→

§

fine mixed
subdivisions of m∆n−1

ª



An example



An example



The associahedral triangulation

This triangulation has appeared under different disguises in many
independent papers:

É Gelfand–Graev–Postnikov, Combinatorics of hypergeometric functions associated with
positive roots, ’97. (As a triangulation of a root polytope)

É Stanley–Pitman, A polytope related to empirical distributions, plane trees, parking
functions, and the associahedron, ’02. (As a mixed subdivision of the Stanley – Pitman
polytope.)

É Petersen–Pylyavskyy–Speyer, A non-crossing standard monomial theory, ’10. (As a
triangulation of a Gelfand-Tseltsin polytope.)

É Santos–Stump–Welker, Noncrossing sets and a Grassmann associahedron. ’14. (As a
triangulation of an Order polytope.)

É . . .



The (I, J)-triangulation

Faces of ∆n × ∆n are of the form

∆I × ∆J = conv
¦

(ei,ej): i ∈ I and j ∈ J
©

The restriction of the associahedral triangulation to the face

CI,J = conv
¦

(ei,ej): i ∈ I and j ∈ J, i ≤ j
©

is called the (I, J)-triangulation.



The (I, J)-triangulation

The cells of this restricted triangulation are indexed by (I, J)-trees
(bipartite non-crossing trees with support I ∪ J)

In this example,

I = {0,1,2,5,6,9} J = {3,4,7,8,10}



The (I, J)-triangulation

Given such a tree T we associate two paths ν(I, J) and ρ(T):

ν(I, J) replaces black and white balls by east and north steps respectively.
ρ(T) counts the in-degrees of the white balls.

Note: the path ρ(T) is weakly above ν.

Proposition (CPS)
Let I, J be a partition of [n] with 0 ∈ I and n ∈ J, and ν = ν(I, J).

É ρ is a bijection from (I, J)-trees to ν-paths.

É flips of (I, J)-trees correspond to ν-Tamari covering relations.
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Realizing the ν-Tamari lattice:
as the dual of a triangulation

Theorem (CPS)

The ν-Tamari lattice Tam(ν) can be realized geometrically as the dual of a
regular triangulation of a sub-polytope of ∆a × ∆b.

Simplicial complex of (I, J)-forests

ν-Narayana numbers

The h-vector (h0, h1, . . . ) of the simplicial (I, J)-associahedron

hℓ = number of ν(I, J)-paths with exactly ℓ valleys,

where a valley of a path is an occurrence of EN.

Classical Narayana numbers when ν = {EN}n, rational Narayana
numbers when ν is the lowest path above a line with rational slope.
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Realizing the ν-Tamari lattice:
as the dual of a mixed subdivision

Corollary (CPS)

Let ν be a lattice path from (0,0) to (a,b). Tam(ν) is the dual of a
coherent mixed subdivision of a generalized permutahedron.
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Tropical geometry

Tropical semiring
(R ∪ {∞},⊕,�)
where x⊕ y := max(x, y) and x� y = x + y

 

Tropical Geometry
Tropical polynomials, tropical curves,
tropical hyperplanes, tropical lines . . .

A tropical line

Theorem (Develin-Sturmfels ’04)
§

regular triangulations
of ∆n ×∆m

ª

↔
§

(combintorial types of) generic arrangements of
m tropical hyperplanes in TPn−1

ª
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A realization of the ν-Tamari lattice

Theorem (CPS)

Let ν be a lattice path from (0,0) to (a,b). Tam(ν) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.
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A realization of the ν-Tamari lattice

Theorem (CPS)

Let ν be a lattice path from (0,0) to (a,b). Tam(ν) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.

The 2-Tamari lattice for n = 4.



A realization of the ν-Tamari lattice

Theorem (CPS)

Let ν be a lattice path from (0,0) to (a,b). Tam(ν) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.

The rational Tamari lattice Tam(3,5).



A realization of the ν-Tamari lattice

Theorem (CPS)

Let ν be a lattice path from (0,0) to (a,b). Tam(ν) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.

The ({0,1,2,3},{4,5,6})-Tamari lattice.



A realization of the ν-Tamari lattice

Theorem (CPS)

Let ν be a lattice path from (0,0) to (a,b). Tam(ν) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.

Theorem
The support of Assoν is convex only if ν does not have two (non-inicial)
consecutive north steps.
In this case, Assoν is a subdivision of a classical associahedron into
Cartesian products of associahedra.



Epilogue: Type B Tropical Catalan Subdivisions



The cyclohedron triangulation

Consider the following trees indexed by cyclic symmetric triangulations of
a (2n + 2)-gon:

Via bipartite cyclically non-crossing trees on [n] t [n].



The cyclohedron triangulation

Theorem (CPS)

This collection of cells form a regular triangulation of ∆n × ∆n dual to an
n-dimensional cyclohedron.



A cyclic (I, J)-triangulation

Restricting to faces: a natural definition for (I, J)-triangulations of type Bn



The Tamari poset of type Bn

Thomas ’06 and Reading ’06 defined Tamari lattices of type Bn
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(I, J)-cyclohedra of type Bn

Tropicalizing   a natural definition for (I, J)-cyclohedra
((I, J) associahedra of type Bn)

Thank you!
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