

Tropical Catalan Subdivisions

Arnau Padrol

IMJ - PRG UPMC Paris 06

joint work with

Cesar Ceballos and Camilo Sarmiento

<ロト <部ト < 문ト < 문ト

DQC+

Séminaire Flajolet - 29/09/2016

Tropical Catalan Subdivisions

The Catalan numbers

1, 2, 5, 14, 42, 132, 429, 1430, ...

The Catalan numbers

The Catalan numbers

1, 2, 5, 14, 42, 132, 429, 1430, ...

The Tamari lattice

The Tamari lattice: a partial order on Catalan families

The Tamari lattice

The Tamari lattice: a partial order on Catalan families

The Associahedron

The Tamari lattice can be realized by the graph of the Associahedron

[Dov Tamari, Monoïdes préordonnés et chaînes de Malcev, PhD thesis, Université de Paris, (1951)] The Tamari lattice can be realized by the graph of the Associahedron

From [Ceballos, Santos, Ziegler, Many non-equivalent realizations of the Associahedron (2014)]

Stasheff ('63), Haiman ('84), Lee ('89), Gelfand-Kapranov-Zelevinsky ('94), Chapoton-Fomin-Zelevinsky ('02), Rote-Santos-Streinu ('03), Loday ('04), Hohlweg-Lange ('07), Postnikov ('09), Ceballos-Santos-Ziegler ('14)... among many others. *Fuss-Catalan path*: lattice path from (0, 0) to (mn, n) that stays weakly above the main diagonal.

Fuss-Catalan path: lattice path from (0, 0) to (mn, n) that stays weakly above the main diagonal.

m-Tamari lattice: poset (actually a lattice) on Fuss-Catalan paths determined by this following covering relation

[François Bergeron and Louis-François Préville-Ratelle. Higher trivariate diagonal harmonics via generalized Tamari posets, (2012)]

The *m*-Tamari lattice

[François Bergeron. Combinatorics of *r*-Dyck paths, *r*-Parking functions, and the *r*-Tamari lattices (2012)]

The *m*-Tamari lattice

[François Bergeron. Combinatorics of *r*-Dyck paths, *r*-Parking functions, and the *r*-Tamari lattices (2012)]

There has also been recently a lot of work on geometric (or polytopal) realizations of the associahedron (the Tamari poset for r = 1). This leads to the natural question of describing similar constructions for all r-Tamari posets. Figure 6 suggests a tantalizing outlook on this.

The ν -Tamari lattice

 ν -Tamari lattice: similar on paths above a given lattice path ν ...

[Louis-François Préville-Ratelle and Xavier Viennot, An extension of Tamari lattices (2014)]

Tropical Catalan Subdivisions

Consider the *product of two simplices*

$$\Delta_n \times \Delta_{\overline{n}} = \operatorname{conv}\left\{ (\mathbf{e}_i, \mathbf{e}_{\overline{j}}) \colon 0 \leq i, \overline{j} \leq n \right\}.$$

We want to <mark>triangulate</mark> (subdivide into simplicies) the sub-polytope

$$\mathcal{C}_n = \operatorname{conv}\left\{ \left(\mathbf{e}_i, \mathbf{e}_{\overline{j}} \right) : 0 \le i \le \overline{j} \le n \right\}$$

Consider the *product of two simplices* $\Delta_n \times \Delta_{\overline{n}} = \operatorname{conv} \left\{ (\mathbf{e}_i, \mathbf{e}_{\overline{i}}) : 0 \le i, \overline{j} \le n \right\}.$

We want to triangulate (subdivide into simplicies) the sub-polytope

$$\mathcal{C}_n = \operatorname{conv}\left\{ (\mathbf{e}_i, \mathbf{e}_{\overline{j}}) \colon 0 \le i \le \overline{j} \le n \right\}$$

$$\Delta_n \times \Delta_{\overline{n}} = \operatorname{conv}\left\{ (\mathbf{e}_i, \mathbf{e}_{\overline{j}}) \colon 0 \leq i, \overline{j} \leq n \right\}.$$

We want to triangulate (subdivide into simplicies) the sub-polytope

$$\mathcal{C}_n = \operatorname{conv}\left\{ \left(\mathbf{e}_i, \mathbf{e}_{\overline{j}}\right) : 0 \le i \le \overline{j} \le n \right\}$$

$$\Delta_n \times \Delta_{\overline{n}} = \operatorname{conv}\left\{ (\mathbf{e}_i, \mathbf{e}_{\overline{j}}) \colon 0 \leq i, \overline{j} \leq n \right\}.$$

We want to triangulate (subdivide into simplicies) the sub-polytope

$$\mathcal{C}_n = \operatorname{conv}\left\{ \left(\mathbf{e}_i, \mathbf{e}_{\overline{j}}\right) : 0 \le i \le \overline{j} \le n \right\}$$

The cells: indexed by triangulations of an (n+2)-gon

In this example, the cell is:

$$\operatorname{conv}\left\{(\mathbf{e}_0, \mathbf{e}_{\overline{0}}), (\mathbf{e}_0, \mathbf{e}_{\overline{2}}), (\mathbf{e}_0, \mathbf{e}_{\overline{4}}), (\mathbf{e}_1, \mathbf{e}_{\overline{1}}), \dots, (\mathbf{e}_4, \mathbf{e}_{\overline{4}})\right\}$$

Alternatively: *bipartite non-crossing* trees on $[n] \sqcup [\overline{n}]$.

The cells: indexed by triangulations of an (n + 2)-gon

In this example, the cell is:

$$\operatorname{conv}\left\{(\mathbf{e}_0, \mathbf{e}_{\overline{0}}), (\mathbf{e}_0, \mathbf{e}_{\overline{2}}), (\mathbf{e}_0, \mathbf{e}_{\overline{4}}), (\mathbf{e}_1, \mathbf{e}_{\overline{1}}), \dots, (\mathbf{e}_4, \mathbf{e}_{\overline{4}})\right\}$$

Alternatively: *bipartite non-crossing* trees on $[n] \sqcup [\overline{n}]$.

Fact

- ► These cells triangulate the polytope $C_n \subset \Delta_n \times \Delta_{\overline{n}}$
- This triangulation is dual to an associahedron.
- The triangulation is regular and flag.

Example

The 1-dimensional associahedron is the dual of a triangulation of a 4-dimensional polytope $C_2 \subset \Delta_2 \times \Delta_{\overline{2}}$.

Example

The 1-dimensional associahedron is the dual of a triangulation of a 4-dimensional polytope $C_2 \subset \Delta_2 \times \Delta_{\overline{2}}$.

Why do you want to draw a 1-dim edge in 4 dimensions? This might look like a disadvantage. But this approach is actually very powerful.

Theorem (The Cayley trick [Huber-Rambau-Santos '00])

 $\begin{cases} \text{triangulations} \\ \text{of } \Delta_n \times \Delta_{\overline{m}} \end{cases} \xleftarrow{ \textbf{Cayley trick}} \begin{cases} \text{fine mixed} \\ \text{subdivisions of } m\Delta_{n-1} \end{cases}$

This triangulation has appeared under different disguises in many independent papers:

- Gelfand–Graev–Postnikov, Combinatorics of hypergeometric functions associated with positive roots, '97. (As a triangulation of a root polytope)
- Stanley–Pitman, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, '02. (As a mixed subdivision of the Stanley – Pitman polytope.)
- Petersen–Pylyavskyy–Speyer, A non-crossing standard monomial theory, '10. (As a triangulation of a Gelfand-Tseltsin polytope.)
- Santos–Stump–Welker, Noncrossing sets and a Grassmann associahedron. '14. (As a triangulation of an Order polytope.)

▶ ...

Faces of $\Delta_n \times \Delta_{\overline{n}}$ are of the form

$$\Delta_I \times \Delta_{\overline{j}} = \operatorname{conv}\left\{ (\mathbf{e}_i, \mathbf{e}_{\overline{j}}) : i \in I \text{ and } \overline{j} \in \overline{j} \right\}$$

The restriction of the associahedral triangulation to the face

$$\mathcal{C}_{l,\bar{J}} = \operatorname{conv}\left\{(\mathbf{e}_i, \mathbf{e}_{\bar{j}}) \colon i \in I \text{ and } \bar{j} \in \bar{J}, i \leq \bar{j}\right\}$$

is called the (I, \overline{J}) -triangulation.

The cells of this restricted triangulation are indexed by (I, \overline{J}) -trees (bipartite non-crossing trees with support $I \cup \overline{J}$)

In this example,

 $I = \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{9}\} \qquad \overline{J} = \{\overline{\mathbf{3}}, \overline{\mathbf{4}}, \overline{\mathbf{7}}, \overline{\mathbf{8}}, \overline{\mathbf{10}}\}$

Given such a tree *T* we associate two paths $\nu(I, \overline{J})$ and $\rho(T)$:

 $v(I,\bar{J})$ replaces black and white balls by east and north steps respectively. $\rho(T)$ counts the in-degrees of the white balls.

Note: the path $\rho(T)$ is weakly above ν .

Given such a tree *T* we associate two paths $\nu(I, \overline{J})$ and $\rho(T)$:

 $v(I,\bar{J})$ replaces black and white balls by east and north steps respectively. $\rho(T)$ counts the in-degrees of the white balls.

Note: the path $\rho(T)$ is weakly above ν .

Given such a tree *T* we associate two paths $\nu(I, \overline{J})$ and $\rho(T)$:

 $v(I,\bar{J})$ replaces black and white balls by east and north steps respectively. $\rho(T)$ counts the in-degrees of the white balls.

Note: the path $\rho(T)$ is weakly above ν .

Proposition (CPS)

Let I, J be a partition of [n] with $0 \in I$ and $n \in J$, and $\nu = \nu(I, \overline{J})$.

- ρ is a bijection from (I, \overline{J}) -trees to ν -paths.
- Fips of (I, \overline{J}) -trees correspond to ν -Tamari covering relations.

Realizing the ν -Tamari lattice: as the dual of a triangulation

Theorem (CPS)

The ν -Tamari lattice Tam(ν) can be realized geometrically as the dual of a regular triangulation of a sub-polytope of $\Delta_a \times \Delta_b$.

Realizing the ν -Tamari lattice: as the dual of a triangulation

Theorem (CPS)

The ν -Tamari lattice Tam(ν) can be realized geometrically as the dual of a regular triangulation of a sub-polytope of $\Delta_a \times \Delta_b$.

Simplicial complex of (I, \overline{J}) -forests

Realizing the ν -Tamari lattice: as the dual of a triangulation

Theorem (CPS)

The ν -Tamari lattice Tam(ν) can be realized geometrically as the dual of a regular triangulation of a sub-polytope of $\Delta_a \times \Delta_b$.

Simplicial complex of (I, \overline{J}) -forests

ν -Narayana numbers

The *h*-vector $(h_0, h_1, ...)$ of the simplicial (I, \overline{J}) -associahedron

 h_{ℓ} = number of $\nu(I, \bar{J})$ -paths with exactly ℓ valleys,

where a valley of a path is an occurrence of EN.

Classical Narayana numbers when $\nu = \{EN\}^n$, rational Narayana numbers when ν is the lowest path above a line with rational slope.

Realizing the ν -Tamari lattice: as the dual of a mixed subdivision

Corollary (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the dual of a coherent mixed subdivision of a generalized permutahedron.

Realizing the ν -Tamari lattice: as the dual of a mixed subdivision

Corollary (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the dual of a coherent mixed subdivision of a generalized permutahedron.

Tropical Catalan Subdivisions

 $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where $x \oplus y := \max(x, y)$ and $x \odot y = x + y$

 $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where $x \oplus y := \max(x, y)$ and $x \odot y = x + y$

ş

Tropical Geometry

Tropical polynomials, tropical curves, tropical hyperplanes, tropical lines ...

A tropical line

 $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where $x \oplus y := \max(x, y)$ and $x \odot y = x + y$

ş

Tropical Geometry

Tropical polynomials, tropical curves, tropical hyperplanes, tropical lines ...

 $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where $x \oplus y := \max(x, y)$ and $x \odot y = x + y$

ş

Tropical Geometry

Tropical polynomials, tropical curves, tropical hyperplanes, tropical lines ...

Theorem (Develin-Sturmfels '04)

 $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where $x \oplus y := \max(x, y)$ and $x \odot y = x + y$

ş

Tropical Geometry

Tropical polynomials, tropical curves, tropical hyperplanes, tropical lines ...

Theorem (Develin-Sturmfels '04)

 $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where $x \oplus y := \max(x, y)$ and $x \odot y = x + y$

Tropical Geometry

Tropical polynomials, tropical curves, tropical hyperplanes, tropical lines ...

A tropical arrangement of lines

Theorem (Develin-Sturmfels '04)

 $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ where $x \oplus y := \max(x, y)$ and $x \odot y = x + y$

Ş

Tropical Geometry

Tropical polynomials, tropical curves, tropical hyperplanes, tropical lines ...

A tropical arrangement of lines

Theorem (Develin-Sturmfels '04)

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement.

The 4-Tamari lattice for n = 3.

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement.

The 4-Tamari lattice for n = 3.

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement.

The 2-Tamari lattice for n = 4.

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement.

The rational Tamari lattice Tam(3, 5).

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement.

The $(\{0, 1, 2, 3\}, \{\overline{4}, \overline{5}, \overline{6}\})$ -Tamari lattice.

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement.

Theorem

The support of $Asso_{\nu}$ is convex only if ν does not have two (non-inicial) consecutive north steps. In this case, $Asso_{\nu}$ is a subdivision of a classical associahedron into Cartesian products of associahedra.

Epilogue: Type B Tropical Catalan Subdivisions

Consider the following trees indexed by cyclic symmetric triangulations of a (2n + 2)-gon:

Via *bipartite cyclically non-crossing* trees on $[n] \sqcup [n]$.

Theorem (CPS)

This collection of cells form a regular triangulation of $\Delta_n \times \Delta_{\overline{n}}$ dual to an *n*-dimensional cyclohedron.

A cyclic (I, \overline{J}) -triangulation

Restricting to faces: a natural definition for (I, \overline{J}) -triangulations of type B_n

The Tamari poset of type B_n

Thomas '06 and Reading '06 defined Tamari lattices of type B_n

The Tamari poset of type B_n

Thomas '06 and Reading '06 defined Tamari lattices of type $B_n \rightarrow a$ natural definition for (I, \overline{J}) -Tamari posets of type B_n

The Tamari poset of type B_n

Thomas '06 and Reading '06 defined Tamari lattices of type $B_n \Rightarrow a$ natural definition for (I, \overline{J}) -Tamari posets of type B_n

Tropicalizing \rightsquigarrow a natural definition for (I, \overline{J}) -cyclohedra $((I, \overline{J})$ associahedra of type $B_n)$

Tropicalizing \rightsquigarrow a natural definition for (I, \overline{J}) -cyclohedra $((I, \overline{J})$ associahedra of type $B_n)$

