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Tropical Catalan Subdivisions



Catalan numbers

The Catalan numbers
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The Tamari lattice

The Tamari lattice: a partial order on Catalan families




The Tamari lattice

The Tamari lattice: a partial order on Catalan families
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The Associahedron

The Tamari lattice can be realized by the graph of the Associahedron

[Dov Tamari, Monoides préordonnés et chaines de Malcev, PhD thesis,
Université de Paris, (1951)]



The Associahedron

The Tamari lattice can be realized by the graph of the Associahedron

From [Ceballos, Santos, Ziegler, Many non-equivalent realizations of the
Associahedron (2014)]

Stasheff ('63), Haiman ('84), Lee ('89), Gelfand-Kapranov-Zelevinsky ('94),
Chapoton-Fomin-Zelevinsky ('02), Rote-Santos-Streinu ('03), Loday ('04), Hohlweg-Lange ('07),
Postnikov ('09), Ceballos-Santos-Ziegler ("14)... among many others.




The m-Tamari lattice

Fuss-Catalan path: lattice path from (0, 0) to (mn, n) that stays weakly
above the main diagonal.




The m-Tamari lattice

Fuss-Catalan path: lattice path from (0, 0) to (mn, n) that stays weakly
above the main diagonal.

<

m-Tamari lattice: poset (actually a lattice) on Fuss-Catalan paths
determined by this following covering relation

[Francois Bergeron and Louis-Francois Préville-Ratelle. Higher trivariate
diagonal harmonics via generalized Tamari posets, (2012)]



The m-Tamari lattice

1-Tamarin=4 4-Tamarin =3 2-Tamarin=4

[Francois Bergeron. Combinatorics of r-Dyck paths, r-Parking functions,
and the r-Tamari lattices (2012)]



The m-Tamari lattice

1-Tamarin=4 4-Tamarin =3 2-Tamarin=4

[Francois Bergeron. Combinatorics of r-Dyck paths, r-Parking functions,
and the r-Tamari lattices (2012)]

There has also been recently a lot of work on
geometric (or polytopal) realizations of the
associahedron (the Tamari poset for r=1).

This leads to the natural question of describing
similar constructions for all r-Tamari posets.
Figure 6 suggests a tantalizing outlook on this.



The v-Tamari lattice

v-Tamari lattice: similar on paths above a given lattice path v...
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[Louis-Francois Préville-Ratelle and Xavier Viennot, An extension of
Tamari lattices (2014)]
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The associahedral triangulation

(60791)

(o, €0)

Consider the product of two simplices
Ap x Aﬁ:COnV{(ei,ej): Osi,]'Sn}. (e1,e0)
(eo, €0)

We want to triangulate (subdivide into
simplicies) the sub-polytope

Ch = conv{(ej, ): 0<i<j<n}

(e1,e1)

(90791)

(e1,e1)



The associahedral triangulation

Consider the product of two simplices

Ap x Ap = conv{(e,-, e]-.): 0< i,js n}.

We want to triangulate (subdivide into
simplicies) the sub-polytope

Ch= conv{(e,-, e): 0 <i<j< n}




The associahedral triangulation

(eo,eo0) (e1,e0)
(el,ez)
Consider the product of two simplices €p, €
Ap x A =conv{(e; €): 0<ij<n}. (eo,e1) eve1)
(0, 0)

We want to triangulate (subdivide into i (e1,e2)
simplicies) the sub-polytope ”

Ch = conv{(ei, e): 0 <i<j< n}



The associahedral triangulation

(eo,e0)

(elv eO)

Consider the product of two simplices

€0, €2

(o, e1)

Ap x Ap = conv{(e,-, e}-.): 0< i,j_'s n}.

We want to triangulate (subdivide into
simplicies) the sub-polytope

Ch = conv{(ei, e): 0 <i<j< n}

e1761)

(e1,e2)




The associahedral triangulation

The cells: indexed by triangulations of an (n+ 2)-gon

In this example, the cell is:

conv{(eo, p), (€0, 3), (€0, €7), (€1, e7),..., (€4, e7)}

Alternatively: bipartite non-crossing trees on [n] U [n].



The associahedral triangulation

The cells: indexed by triangulations of an (n+ 2)-gon

In this example, the cell is:

conv{(eo, p), (€0, 3), (€0, €7), (€1, e7),..., (€4, e7)}

Alternatively: bipartite non-crossing trees on [n] U [n].

» These cells triangulate the polytope Cn, C Ap x Ag
> This triangulation is dual to an associahedron.
» The triangulation is regular and flag.



The associahedral triangulation

The 1-dimensional associahedron is the dual of a triangulation of a
4-dimensional polytope C> € Az x As.

Example



The associahedral triangulation

The 1-dimensional associahedron is the dual of a triangulation of a
4-dimensional polytope C> € Az x As.

Example

Why do you want to draw a 1-dim edge in 4 dimensions?
This might look like a disadvantage.
But this approach is actually very powerful.



(The Cayley trick)

Theorem (The Cayley trick [Huber-Rambau-Santos '00])

triangulations) Cayley trick fine mixed
of A, x Am subdivisions of mA,_1

>R




An example




An example




The associahedral triangulation

This triangulation has appeared under different disguises in many
independent papers:

>

Gelfand-Graev-Postnikov, Combinatorics of hypergeometric functions associated with
positive roots, '97. (As a triangulation of a root polytope)

Stanley-Pitman, A polytope related to empirical distributions, plane trees, parking
functions, and the associahedron, '02. (As a mixed subdivision of the Stanley — Pitman
polytope.)

Petersen-Pylyavskyy-Speyer, A non-crossing standard monomial theory, '10. (As a
triangulation of a Gelfand-Tseltsin polytope.)

Santos-Stump-Welker, Noncrossing sets and a Grassmann associahedron. '14. (As a
triangulation of an Order polytope.)



The (/,/)-triangulation

Faces of Ap x Ay are of the form
A x Aj= conv{(e,-, e):ieland j e]}

The restriction of the associahedral triangulation to the face
C,j = conv {(e,-, ej):iclandje],i s]}

is called the (/,/)-triangulation.




The (/,/)-triangulation

The cells of this restricted triangulation are indexed by (1,))-trees
(bipartite non-crossing trees with support /uJ)

In this example,

/1={0,1,2,5,6,9} J=43,4,7,8,10}



The (/,/)-triangulation

Given such a tree T we associate two paths v(/,]) and p(T):

v(l,]) replaces black and white balls by east and north steps respectively.
o(T) counts the in-degrees of the white balls.

Note: the path p(T) is weakly above v.



The (/,/)-triangulation

Given such a tree T we associate two paths v(/,]) and p(T):

v(1,]) replaces black and white balls by east and north steps respectively.
p(T) counts the in-degrees of the white balls.

Note: the path p(T) is weakly above v.



The (/,/)-triangulation

Given such a tree T we associate two paths v(/,]) and p(T):

vI,J)= E E N N E E N N E ;
p(T) = EN N EN EEN E N

v(1,]) replaces black and white balls by east and north steps respectively.
p(T) counts the in-degrees of the white balls.

Note: the path p(T) is weakly above v.

Proposition (CPS)
Let 1,] be a partition of [n] with 0 € | and n €/, and v = v(1,]).
> o is a bijection from (I,])-trees to v-paths.

> flips of (I,])-trees correspond to v-Tamari covering relations.



Realizing the v-Tamari lattice:
as the dual of a triangulation

Theorem (CPS)

The v-Tamari lattice Tam(Vv) can be realized geometrically as the dual of a
regular triangulation of a sub-polytope of Ag x Ap.




Realizing the v-Tamari lattice:
as the dual of a triangulation

Theorem (CPS)

The v-Tamari lattice Tam(Vv) can be realized geometrically as the dual of a
regular triangulation of a sub-polytope of Ag x Ap.

Simplicial complex of (1, ])-forests
P @ m @ m m m o




Realizing the v-Tamari lattice:
as the dual of a triangulation

Theorem (CPS)

The v-Tamari lattice Tam(Vv) can be realized geometrically as the dual of a
regular triangulation of a sub-polytope of Ag x Ap.

Simplicial complex of (1, ])-forests
Vo) @ E W @ G Fnd
Vi Y @\ m @ @ /‘A @ m

v-Narayana numbers
The h-vector (hg, h1, ...) of the simplicial (/,/)-associahedron

h; = number of v(1,])-paths with exactly / valleys,

where a valley of a path is an occurrence of EN.

Classical Narayana numbers when v = {EN}", rational Narayana
numbers when v is the lowest path above a line with rational slope.



Realizing the v-Tamari lattice:
as the dual of a mixed subdivision

Corollary (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the dual of a
coherent mixed subdivision of a generalized permutahedron.




Realizing the v-Tamari lattice:
as the dual of a mixed subdivision

Corollary (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(V) is the dual of a
coherent mixed subdivision of a generalized permutahedron.
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Tropical geometry

Tropical semiring
(Ru{oo}, @, 0)
where x® y := max(x,y) and xey=x+y



Tropical geometry

Tropical semiring
(Ru{oo}, @, 0)
where x® y := max(x,y) and xey=x+y

Tropical Geometry
Tropical polynomials, tropical curves,
tropical hyperplanes, tropical lines ...

A tropical line
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Tropical semiring
(Ru{oo}, ®,0)
where x @ y := max(x,y) and xey =x+y

Tropical Geometry
Tropical polynomials, tropical curves,
tropical hyperplanes, tropical lines ...

A tropical
arrangement of lines



Tropical geometry

Tropical semiring
(Ru{oo}, ®,0)
where x @ y := max(x,y) and xey =x+y

Tropical Geometry
Tropical polynomials, tropical curves, I
tropical hyperplanes, tropical lines ...

A tropical
arrangement of lines

Theorem (Develin-Sturmfels '04)

regular triangulations (combintorial types of) generic arrangements of
of An x Am m tropical hyperplanes in TP"~1
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Tropical geometry

Tropical semiring
(Ru{oo}, @, 0)
where x® y := max(x,y) and xey=x+y

Tropical Geometry
Tropical polynomials, tropical curves,

tropical hyperplanes, tropical lines ... )
A tropical

arrangement of lines

Theorem (Develin-Sturmfels '04)

regular triangulations (combintorial types of) generic arrangements of
of An x Am m tropical hyperplanes in TP"—1



Tropical geometry

Tropical semiring
(Ru{oo}, @, 0)
where x® y := max(x,y) and xey=x+y

Tropical Geometry
Tropical polynomials, tropical curves,
tropical hyperplanes, tropical lines ...

A tropical
arrangement of lines

Theorem (Develin-Sturmfels '04)

regular triangulations (combintorial types of) generic arrangements of
of An x Am m tropical hyperplanes in TP"—1



A realization of the v-Tamari lattice




A realization of the v-Tamari lattice

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(V) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.

The 4-Tamari lattice for n = 3.



A realization of the v-Tamari lattice

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(V) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.

The 4-Tamari lattice for n = 3.



A realization of the v-Tamari lattice

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.

The 2-Tamari lattice for n = 4.



A realization of the v-Tamari lattice

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.
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The rational Tamari lattice Tam(3, 5).



A realization of the v-Tamari lattice

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(V) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.

-

B

The ({0,1, 2,3}, {4,5,6})-Tamari lattice.




A realization of the v-Tamari lattice

Theorem (CPS)

Let v be a lattice path from (0, 0) to (a, b). Tam(v) is the edge graph of a
polyhedral complex induced by a tropical hyperplane arrangement.

The support of Assoy, is convex only if v does not have two (non-inicial)
consecutive north steps.

In this case, Assoy, is a subdivision of a classical associahedron into
Cartesian products of associahedra.




Epilogue: Type B Tropical Catalan Subdivisions



The cyclohedron triangulation

Consider the following trees indexed by cyclic symmetric triangulations of
a (2n+2)-gon:

e it et e

Via bipartite cyclically non-crossing trees on [n] U [n].



The cyclohedron triangulation

Theorem (CPS)

This collection of cells form a regular triangulation of Ap x Ax dual to an
n-dimensional cyclohedron.




A cyclic (1,))-triangulation

Restricting to faces: a natural definition for (/,))-triangulations of type B,




The Tamari poset of type B,

Thomas '06 and Reading '06 defined Tamari lattices of type B
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The Tamari poset of type B,

Thomas '06 and Reading '06 defined Tamari lattices of type Bj
~ a natural definition for (/,/)-Tamari posets of type Bp
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The Tamari poset of type B,

Thomas '06 and Reading '06 defined Tamari lattices of type Bj
~ a natural definition for (/,/)-Tamari posets of type Bp
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(1,))-cyclohedra of type B,

Tropicalizing ~ a natural definition for (I,))-cyclohedra
((1,)) associahedra of type Bj)
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(1,))-cyclohedra of type B,

Tropicalizing ~ a natural definition for (I,))-cyclohedra
((1,)) associahedra of type Bj)
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Thank you!
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