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1 Problem statement

This presentation is focused on the random k-NAESAT problem, which is one of the standard
benchmark problems in the theory of random Constraint Satisfaction Problems (CSPs). The
input to the problem consists of a Boolean formula in k-conjunctive normal form (k-CNF). An
assignment of values to the variables is called not-all-equal satisfying (NAESAT) if it is satisfying
and there is no clause in which all literals are satisfied. Note that for any given k-clause there
are 2k − 2 assignments of the literals that satisfy the clause.

In the random setting, the problem is as follows: Suppose that x1, . . . , xn are the n random
variables, and let m = ⌈cn⌉ for some real c > 0. Let F (n,m) denote a k-CNF formula with m
clauses, where each clause is drawn uniformly at random from the set of all possible clauses.
The central question one can ask in this context is for which c is F (n,m) NAE-satisfiable with

high probability (whp)? This is called the threshold of random k-NAESAT.

2 Summary of previous work and contribution of this presenta-

tion

For the cases k = 1, 2 the threshold is well understood. More generally, Friedgut [4] showed that
there is a sharp threshold sequence ck(n) such that if c < ck(n) then F (n, cn) is satisfiable whp
whereas if c > ck(n) it is unsatisfiable whp. Achlioptas and Moore [2] gave upper and lower
bounds for ck(n) of the form 2k−1 ln 2 − 1+ln 2

2
< ck(n) < 2k−1 ln 2 − ln 2

2
. The lower bound for

ck(n) was improved by Coja-Oghlan and Zdeborová [5] who showed that 2k−1 ln 2− ln 2 < ck(n).
This left an additive gap of 1

2
ln 2 ≈ 0.347 which this work closes. Namely, we showed that ck(n)

is equal to

2k−1 ln 2−

(

ln 2

2
+

1

4

)

+ εk

where εk < 2−k.
This improvement, albeit modest at first sight, is conceptually significant for two reasons.

First, we obtain (virtually) matching upper and lower bounds for the first time in a random
CSP of this type. Second, we devise a rigorous method for understanding what happens at the
so-called condensation phase, which occurs shortly before the threshold phase.

The k-NAESAT problem belongs in the class of random CSP problems (along with many
other problems such as random k-SAT, k-coloring random graphs and 2-coloring random k-
uniform hypergraphs). For random CSPs, statistical physicists have developed sophisticated
but non-rigorous techniques, which, nevertheless, have provided a detailed picture about the
structural properties and have helped raise many conjectures.
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3 Shattering and condensation

What is the evolution of the solution space of k-NAESAT? To answer this, consider the following
graph Gc. The vertices of Gc are all NAE-satisfying assignments of Fn,cn; moreover, there is an
edge between two solutions if and only if their Hamming distance is small, namely o(n). Clearly,
if c = 0 then V contains all 2n assignments, and G0 is connected. On the other extreme, if
c > ck(n), then Gc is empty whp.

There are two significant phases in the evolution of Gc, as c increases. The first phase,
namely the shattering phase, occurs at about ck/k. Here, Gc contains exponentially many
clusters (hence the term “shattering”), with each cluster containing exponentially many as-
signments. Furthermore, the pairwise distance between clusters is roughly n/2. This phase is
well-understood, thanks to previous work of Achlioptas and Ricci-Tersenghi [3] and Achlioptas

and Coja-Oghlan [1]. In contrast, the condensation phase occurs at c = ck −
(

ln 2

2
− 1

4

)

, as

demonstrated in previous work by Coja-Oghlan and Zdeborová [5].
This latter phase introduces significant difficulties in the analysis. Consider the following ex-

periment. Suppose we choose two solutions uniformly at random from the set of NAE-satisfying
assignments. In the shattering phase, we expect the Hamming distance between the solutions to
be roughly n/2. However, in the condensation phase, this distance is very small, namely ok(1).
Intuitively, this means that there are heavy correlations between solutions, which explains why
previously known methods break down at the condensation threshold.

4 Outline of our approach

In order to tame the difficulties observed at the condensation phase, we need to address two
separate problems. The first has to do with counting atypical assignments, namely assignments
contained in small clusters. Physicists have already provided evidence that in almost all assign-
ments in a cluster, most variables are frozen, i.e, they take the same value. The problem is that
there is simply no way to tell whether a given variable is frozen: deciding this is NP-hard in
the worst case. Instead, we are going to work with a simple parameter that turns out to be a
good substitute for the frozen variables. To this end, observe that if a variable x is frozen, then
there is at least one clause C such that if we assigned x the opposite value, then C would be
violated. We call a variable blocked if it is contained in such a clause. We were able to show
that most blocked variables are frozen, and thus suffices to count NAE-satisfying assignments
with sufficiently many blocked variables.

To understand why we need to fix further parameters of the formula, let us define the
degree dx of a variable x as the number of times that x occurs in the random formula F . Let
d = (dx)x ∈ V be the degree sequence of F . It is well known that in the “plain” random formula
the degree of each variable is asymptotically Poisson with mean km/n. On the other hand, if
we condition on some specific satisfying assignment that has “too many” blocked variables, then
the degrees are not asymptotically Poisson anymore. Indeed, the degree dx is the sum of the
number sx of clauses that x supports, and the number d′x of times that x appears otherwise.
While d′x is asymptotically Poisson with mean smaller than km/n as the non-critical clauses do
not affect the number of blocked variables at all, sx is not, since it corresponds to an atypical
outcome of a random experiment. The precise distribution of sx is quite non-trivial, but it is
not difficult to verify that sx does not have a Poisson distribution.
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