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Permutations and patterns

Permutation of size n : Order on [1..n]
Example : σ = 3 1 2 8 5 4 7 9 6

Pattern : extracted sub-structure (cf subword)
Example : 1 3 2 4 4 3 1 2 8 5 4 7 9 6 since 2 5 4 9 ≡ 1 3 2 4.
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Remark: σ, π as input, deciding whether π 4 σ is NP-complete.



Permutation Classes

Class of permutations: set downward closed for 4
Equivalently: σ ∈ C and π 4 σ ⇒ π ∈ C

Av(B): the class of perm. avoiding all the patterns in the set B.

Prop.: Every class C is characterized by its basis:

C = Av(B) for B = {σ /∈ C|∀π 4 σ with π 6= σ, π ∈ C}

Basis may be finite or infinite.
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Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:
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Sorting with one stack: a linear algorithm

Question: How to decide if σ is
sortable?

Find m ∈ {ρ, µ}∗ s.t. the output
m(σ) is the identity
|σ| = n ⇒ |m(σ)|ρ = |m(σ)|µ = n.

ρµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, µ}2n

→ exponential algorithm.

Key: At most one way to sort a permutation:
Do move µ if and only if the top of the stack is the next element
to be output.

→ A linear algorithm to test whether a permutation is sortable.
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Sorting with one stack: a mathematical characterization

Question: How many sortable permutations of size n?

σ sortable ⇔ σ avoids 231

The set of permutations sortable with one stack: Av(231)
enumerated by Catalan numbers: cn = 1

n+1

( n
2n

)
≈ 4n << n! ≈ nn

Generalized by Tarjan, Pratt...
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Natural questions for sorting devices

• Decision: what is the complexity of the problem consisting of
deciding whether a given permutation is sortable or not?

• Characterization: can one characterize permutations that are
sortable?

• Counting: how many sortable permutations of size n?



Sorting with two stacks in serie

Definition: σ is sortable if ∃ m
∈ {ρ, λ, µ}∗ s.t. the output m(σ)
is the identity (Knuth 1973).

Question: σ a given permutation, is
σ sortable with two stacks? HV

ρλµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, λ, µ}3n

s.t. |m(σ)|ρ = |m(σ)|λ = |m(σ)|µ = n

→ exponential algorithm (33n tests).

Is there a polynomial algorithm?

Conjectured NP-complete in the litterature
[Atkinson, Murphy, Ruskuc (2002)], [Bona (2003)], [Albert, Atkinson, Linton (2010)]
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A canonical way to sort?

• Non unique way to sort.

Example: moves µ and ρ commute.

• Canonical sorting?

HV

ρλµ
σ1 . . . σn

µ ⇔ top of V is the next element to be output.

Some permutations still have an exponential number of sortings:
n (n − 1) . . . 1 can be sorted in 2(n−1) differents ways.

No way to choose between move λ and move ρ

Several weaker variants have been studied:
Greedy algorithm (West 93), Increasing stacks (Murphy 02)...
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A permutation class

Let π ≺ σ (pattern)

sorting procedure for σ → sorting procedure for π

↪→ σ sortable and π ≺ σ ⇒ π sortable

↪→ sortable permutations form a class Av(B)

But B infinite and not characterised

length sortable unsortable basis

n ≤ 6 n! 0 0

7 5018 22 22

8 39374 946 51

9 336870 26010 146

10 3066695 562105 604
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Decomposition

• σ = ⊕[π1, . . . , πn]

is sortable ⇔ ∀i , πi is sortable.

π1

π2

πn

π1. . .πn
xxx

s(π1). . .s(πn)

• σ = 	[π1, . . . , πn] is sortable ⇒ ∀i , πi is sortable.

π1

π2

πn

π1. . .πn
xxx

s(πn). . .s(π1)

Converse not true: πi has to admit a special sorting in 2 steps:

σ = 	[π1, . . . , πn] is sortable ⇔ ∀i < n, πi is pushall sortable and
πn is sortable.
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Encoding a pushall sorting

2 4 3 1 → 2 4 3 1
→ 2

4 3 1
→ 24 3 1

→ 2
3

4 1
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3 1
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4
3
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3
1

→ 24
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→ 4
3
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1
→ 4

31 2
→ 41 2 3

→ 1 2 3 4

m

2 4 3 1 (1 stack-sorting) → 2
1

4
3

→ (1 stack-sorting) 1 2 3 4

m
2 4 3 1

Pushall sorting process ⇔ configuration ⇔ valid coloring

→ Test in linear time whether a coloring is valid.
2n colorings to test → reduce this number.
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Valid coloring: characterization

Valid coloring: coloring of σ with two colors G and R s.t.

• no pattern 132 in R

• no pattern 213 in G

• no point of R lying vertically between a pattern 12 of G

• no point of G lying horizontally between a pattern 12 of R

⇒ coloring with forbidden patterns 132, 213, 1X2 and 2/13

Proof: R = right stack and G = left stack ⇒ bijection between
these colorings and valid stack-configurations.
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Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).
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Decomposition

Forbidden colored patterns:

Col(σ) = the set of valid colorings of σ

]Col(n (n−1) . . . 1) = 2n

	[π1, . . . , πk ] =
π1

π2

πk

Example : 	[1, . . . , 1] = n (n−1) . . . 1

Theorem
σ = 	[π1, . . . , πk ]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)
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Restrict the number of bicolorings to test

Add hypothesis
to ensure a polynomial number of bicolorings to test.

• Assume σ is 	-indecomposable.
Otherwise σ = 	[π1 . . . πn] with πi 	-indecomposable
σ = 	[π1, . . . , πk ]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)
So replace σ by the πi .

• Separate distinct cases:
Each pattern 12 is unicolor
There are patterns 12 but no pattern 12
There are patterns 12 but no pattern 12
There are patterns 12 and patterns 12.
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Forbidden colored patterns ⇒ implication rules
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First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color, then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G ).
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Other cases

• There are patterns 12 but no pattern 12: Position of the
down-rightmost pattern 12 determines all colors:
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σi

Moreover, knowing the position of σi is sufficient to recover
σj and determine all colors.

• Similar results for the other cases.
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8 kinds of colorings for σ 	-indecomposable

Theorem : c valid coloring of σ ⇒ ∃m, p s.t. c = Cm(p).

C1 C2

j

i
a

b

C3

i

j a

b

1

2 ∗
C4

i

j

k

`

C5

i

j

k

`

C6
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j

k

`

C7

i

j

k

`

A

B

∗

C8



Quadratic algorithm

Algorithm :

Input: σ 	-indecomposable.
Output: All valid colorings of σ:

For i from 1 to 8
For p from 1 to n = |σ|

Test if Ci (p) is a valid coloring of σ

Complexity :

Test if a coloring is valid = linear

σ 	-indecomposable ⇒ |Col(σ)| ≤ 8|σ| computed in O(|σ|2)

σ = 	[π1, . . . , πk ]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)

→ Col(σ) described by
(
Col(π1), . . . ,Col(πk)

)
→ computed in quadratic time: 8|π1|2 + · · ·+ 8|πk |2 ≤ 8|σ|2.
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Outline

1. Introduction to stack sorting

2. Pushall sorting (tri par sas)

3. General sorting



From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear. Exponentiel number of tests?
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Configurations of C (i+1) linked to
those of D(i+1)

→ sorting graph
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Sorting graph for σ(i)

σ(i) = 	[B1,B2, . . .Bs ]

Stack configurations of B3

Stack configurations of B2

Stack configurations of B1

Links between compatibles stack configurations

→ a path gives a valid stack configuration of σ(i) which is a part
of a sorting procedure of σ1 . . . σki .



Algorithm

σ = . . . σk1 . . . σk2 . . . σk` (σki = right-to-left minima of σ)

At step i , the algorithm returns false if σ1 . . . σki is not 2-stack
sortable.

Otherwise it computes the sorting graph of σ(i) describing all the
possible stack configurations when σki enters the stacks in a
sorting procedure of σ verifying some conditions.

Sorting graph of σ(i) computed from the one of σ(i−1) by checking
compatibility between configurations.



Conclusion

Polynomial decision algorithm for 2 stacks in series

• New notion: push-all sorting

• Characterization through bicolorings with excluded patterns

• Optimal quadratic algorithm to compute all push-all sortings

• Decomposition along right-left minima

• One gets all sortings satisfying a property P.



Perspectives

• Simplify the algorithm?

• Characterize the permutations sortable with 2 stacks in series?
Enumeration?

• Enumerate the push-all sortable permutations?

• Complexity of the decision algorithm for k stacks in series:

• Generalize to more than 2 stacks?
• For fixed k , is the problem still polynomial? Is there a

threshold?
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