Marches dans des cOnes: exposants critiques

KIiLIAN RASCHEL

L Laboratoire de
Mathématiques d

PT et Physique p Denis Polsson
Théorique oo

Séminaire Philippe Flajolet
Institut Henri Poincaré
29 septembre 2016




Introduction

Dimension 1: examples & limits

Central idea in dimension > 2: approximation by Brownian motion

Application #1: excursions

Application #2: walks with prescribed length
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Random processes (RW & BM) in cones

First exit time from a cone C

> rc=inf{lne N :S(n)¢ C} (S RW)
> Te = inf{t € Ry : B(t) & C} (B BM) c

Y

X
Persistence probabilities ~ total number of walks
> Py[rc > n] ~ X V&) - pE-n—©
Local limit theorems ~ excursions
> Pylrc > n, S(n) =y] ~ X Vy) - p&-n@

Aim of the talk: understanding the critical exponents «
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Definition of random walks & motivations

Random walk on Z¢
> A random walk {S(n)}n>0 is
S(n)=x+X(1)+---+ X(n),

where the X(/) are i.i.d. (e.g., uniform on a step set & C Z9)
> Example (Dyck paths): simple random walk X(i) € {—1,1}
Motivations
> Persistence probabilities in statistical physics
> Constructing processes conditioned never to leave cones
> Asymptotics of numbers of walks
>

Transcendental nature of functions counting walks in cones
~> Alin Bostan's course at AEC

v

Important & combinatorial cones (quarter/half/slit plane,
orthants, Weyl chambers, etc.)
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> #{x 1 Z}=2" Walk ~» Exponent 0
n n 22" _ 1

= —x ~ e B d ~ E t =

> #{x — y} <n+(}2, )) \/;ﬁ ridge xponent -

> > ﬁ = oo: recurrence of the simple random walk in Z

> Constant \/g independent of x & y in the asymptotics
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> #n{x — N} ~ 7 Meanders ~~ Exponent 5
n

: 3

> #n{x =y} ~ 7] Excursions ~» Exponent 5

> Reflection principle cancels the first term %%

> Wiener-Hopf techniques in probability theory
> See & Bousquet-Mélou & Petkoviek '00; Banderier & Flajolet '02
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Beyond the algebraic exponents 0, 1 & 3

Weighted models in dimension 1
Drift 2566 s governs the exponents, which are still 0, % &

The simple walk in two-dimensional wedges

> Half-plane:
one-dimensional case

> Dyck paths

> Total number of walks:
~+ Exponent %

> Excursions:
~ Exponent 2 =
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Beyond the algebraic exponents 0, 1 & 3

Weighted models in dimension 1

Drift 2566 s governs the exponents, which are still 0, % & %

The simple walk in two-dimensional wedges

> Quarter plane: product of
two one-dimensional cases

..... > Reflection principle

> Total number of walks:
e ~ Exponent 1 =1 +1

"""""""""" > Excursions:

~> Exponent 3 = 35 +

Nl
Nlw



Beyond the algebraic exponents 0, 1 & 3

Weighted models in dimension 1

Drift 2566 s governs the exponents, which are still 0, % & %

The simple walk in two-dimensional wedges

> Slit plane:
% Bousquet-Mélou & Schaeffer '00

> Highly non-convex cone

> Total number of walks:
~~ Exponent
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Beyond the algebraic exponents 0, 1 & 3

Weighted models in dimension 1

Drift Zse@ s governs the exponents, which are still 0, % & %

The simple walk in two-dimensional wedges

> 45°% & Gouyou-Beauchamps '86

> See
X Bousquet-Mélou & Mishna '10

> Total number of walks:
~ Exponent 2

> Excursions:
~ Exponent 5




Beyond the algebraic exponents 0, 1 & 3

Weighted models in dimension 1
Drift 2566 s governs the exponents, which are still 0, % &

The simple walk in two-dimensional wedges

> 135°: Gessel

> See @ Kauers, Koutschan &
Zeilberger '09; etc.

> Total number of walks:
~» Exponent
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Beyond the algebraic exponents 0, 1 & 3

Weighted models in dimension 1

Drift 2566 s governs the exponents, which are still 0, % & %

The simple walk in two-dimensional wedges

> Walks avoiding a quadrant

> See Bousquet-Mélou '15;
Mustapha '15

> Total number of walks:
~~ Exponent

Wl

> Excursions:
~ Exponent

wlo
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Beyond the algebraic exponents 0, 1 & 3

Weighted models in dimension 1

Drift 2566 s governs the exponents, which are still 0, % & %

The simple walk in two-dimensional wedges

> Arbitrary angular sector 6

> See @ Varopoulos '99; Denisov &
Wachtel '15

> Total number of walks:
~» Exponent 75

> Excursions:
~ Exponent 7 +1

Conclusion: 1D case not enough

> Dramatic change of behavior: every exponent is possible!
> Non-D-finite behaviors (first observed by Varopoulos '99)
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Law of large numbers

X(1)+ -

Central limit theorem

N

n

Brownian motion on R

+ X(n)

nl

nl

{X(1)+--~+X(n)

== E[X(1)]

- E[X(l)]} A0, VX))

Donsker’s theorem (functional central limit theorem)
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Central limit theorem
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> RW — BM

> Mapping theorem: many asymptotic results concerning RW
can be deduced from BM

> For excursions, a{RW} =a{BM} if{ S%Ew% z S{EM% z iOd

> If V[RW] # id then V[M - RW] = id for some M € My(R)

> Cone C becomes M - C



Brownian motion on R

Law of large numbers

X(1)+ -+ X(n)

- 255 E[X(1)

Central limit theorem
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Denisov & Wachtel '15 (excursions for RW in cones C Z9)

> RW — BM
> Mapping theorem: many asymptotic results concerning RW
can be deduced from BM

> For excursions, a{RW} =a{BM} if{ E[RW] =E[BM] =0

V[RW] = V[BM] = id

Remainder of this section: computing a«{BM} (easier)
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Two derivations of the BM persistence probability in R

Reflection principle

A

X Px[T0.0c) > t] = P0[0r<\nligt B(u) > —x]

= Po[IB( )I < X]

e 2tdy

F

t
Heat equation
Function g(t; x) = Px[T(0,cc) > t] satisfies
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Dimension d: explicit expression for P,[T¢ > t]
Heat equation & Doob '55

For essentially any domain C in any dimension d, Px[T¢c > t] &
pC(t;x,y) (Px[Tc > t] = [ pC(t; x, y)dy) satisfy heat equations

Dirichlet eigenvalues problem % Chavel '84

C Aga-tm = —Am inS91nC
Sd-1nC m =0 in 9(S971 N ()
1

Discrete eigenvalues 0 < A1 < A2 < A3 < ... and eigenfunctions
my, mp, m3, ...

Series expansion Q DeBlassie '87; Bafiuelos & Smits '97

Pu[Tc >t =) Bi(lxI*/t)m;(x/Ix])
j=1
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Asymptotics of the non-exit probability

Series expansion @ DeBlassie '87; Bafiuelos & Smits '97

Pu[Tc > t] = Bi(IxI*/t)m;(x/Ix]).

Jj=1
with
> B; hypergeometric
> series expansion very well suited for asymptotics

Asymptotic result % DeBlassie '87; Bafiuelos & Smits '97

P Tec>t]~k-u(x) t ¢,

with oo = 24/ A1 + (% —1)2 - (g — 1) linked to the first eigenvalue

Exercise

Recover the exponent 7, of the persistence probability for a simple
random walk in a two-dimensional wedge of opening angle 6
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Example #1: Gouyou-Beauchamps model

In the quarter plane

.......... ..... ..... ..... Hypotheses on the moments:
E[GB] =(1,0)+(1,-1)+(-1,0)+(-1,1)
=(0,0)
4 -2
vieBl=( 5 ) £ id

> Wedge of angle 6 = 7

> Total number of walks:
s

~» Exponent 75 =

> Excursions:
~» Exponent 7 +1=5
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Example #2: quadrant walks

A scarecrow

> E:(O,O)&V:(_Lll _zll>7éid
DHzarccos(—%):>a:§+1§éQ

S > Yoo #ne{(0,0) = (0,0)}t"
SR S non-D-finite

In dimension 2 (excursions only) % Bostan, R. & Salvy '14

> Systematic computation of o = arccos{algebraic number}

> Walks with small steps:
> «a € Q iff
> generating function of the excursions is D-finite iff
> the group of the model is finite

> If 2566 s # 0, first perform a Cramér transform
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Three-dimensional models
Example: Kreweras 3D

Model with jumps: Exponent o = zm _

N|—=

Value of \1? M\ € Q?
General theory (still to be done!)

> Classification & resolution of some finite group models
LS Bostan, Bousquet-Mélou, Kauers & Melczer '16
> Asymptotic simulation % Bacher, Kauers & Yatchak '16
~» Conjectured Kreweras exponent: 3.3257569
> Equivalence finite group iff D-finite generating functions?
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Non-universal exponents: six cases

Excursions: formula

for o independent of the drift °__s's

Case #1: interior drift

Case #2: boundary

> Law of large numbers:
P[Vn, S(n)e C] >0
> Exponent o =0

> Cannot be used as a filter to detect
non-D-finiteness

drift

> Half-plane case

1
> Exponent o = 3

> Cannot be used as a filter to detect
non-D-finiteness

> Exponent o = é for non-smooth
boundary
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Non-universal exponents: six cases

Case #3: directed drift

> Half-plane case

_3
> Exponent v = 3

> Cannot be used as a filter to detect
non-D-finiteness

> See & Varopoulos '99; Denisov & Wachtel '15
> Exponent

a1 =2/ M+ (g -1)2-(4-1)

> Can be used as a filter to detect
non-D-finiteness
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Case #5: polar interior drift

> See ® Duraj '14

> Exponent 2a; + 1

> Can be used as a filter to detect
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Case #6: polar boundary drift

> Exponent a7 + 1

> Can be used as a filter to detect
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Non-universal exponents: six cases
Case #b: polar interior drift

> See ® Duraj '14

> Exponent 2a; + 1

> Can be used as a filter to detect
non-D-finiteness

> Exponent a7 + 1

> Can be used as a filter to detect
non-D-finiteness

Weighted GB model: with J. Courtiel, S. Melczer & M. Mishna



Non-universal exponents: six cases
Case #b: polar interior drift

> See ® Duraj '14

> Exponent 2a; + 1

> Can be used as a filter to detect
non-D-finiteness

> Exponent a7 + 1

> Can be used as a filter to detect
non-D-finiteness

Six-exponents-result: joint with R. Garbit & S. Mustapha



Philippe Flajolet and critical exponents

®00 raschel2.mw

DBBS XBB 5¢ STPX EE @4 N O%® & K& @ [ B [Rechercher pour aide, tiches, applicar

aue ) Animation
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ON THE WALK {N,E,S,SW}
Philippe Flajolet, NOV 27, 2010
» EXACT COUNTS
» THE KERNEL CURV]
Y CONCLUSIONS
* The growth constant of excursions seems to be related to the disappearance of the central "oval",
which is altogether not that surprising.
* It is interesting to note that the radius of convergence of the GF is strictly latger than 1/s=1/4,
though by only a little bit.
* The critical exponent -5/2 in the empirical formula is fairly plausible: we know -3/2 to be present
in many similar problem. It corresponds with Z=1-z/tho for the GF to a singuar expansion of type
> c[0]-c[1]*z+c[2]*2"(3/2)+etc;
- zte, 2t @0

(Similar things are encoutered in the cnumeration of planar maps, but this is probably not very significant.)
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