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Near-extremal points of random walks
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\//\\>n steps

Number of near-extremal points

M, = max X
0<k<n

D(q,n) =#{0<k <n|X, =M, —q}



Related questions in the literature on random walks

\’n steps

» Local time of RW (and Brownian motion)

" Frequently and rarely visited sites : Erdos, Revesz,..., Toth

Number of times a random walk is at its maximum: Csaki,
Odlyzko



Motivations

= “Crowding” near the maximum: is the maximum lonely at
the top ?

= Plays an important role in the analysis of the optimal
algorithm to find the maximum of a random walk

= Functionals of the maximum of RW and Brownian motion



Local time of Brownian motion close to its maximum

\’n steps

= Asymptotic limit n — oo

T=D(@ = rvaln) 1= p(r) = [ 6(@max —alr) ~r)dr

z(7) : Brownian motion
Tmax = max z(7)

0<7<1
» Q: full statistics of the density of near-extremes p(r) ?
k—1
E[p*(r)] = 8k! Y (—1)'(*7 )@+ 1)@* V(20 + 1)r) + (k — 2(1 + 1))@*HV (21 + 1)r)]




Motivations

M Crowding” near the maximum: is the maximum lonely at
the top ?

= Plays an important role in the analysis of the optimal
algorithm to find the maximum of a random walk

= Applications to ““functionals” of the RW and Brownian motion



Search algorithm for the maximum of a RW

t = a € A,: algorithm that finds M,

® Cost of the algorithm:

C'(a)= number of probes needed

= Q: what is the optimal algorithm ?

The simplest algo. probes all the positions: its cost is n

Because of the correlations between the positions of the
random walker, one can usually do much better



Searching for the maximum of a RW: exploiting correlations
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The maximum is found in 4 probes (4 < 14) !



Searching for the maximum of a RW: optimal algorithm

= Average case optimality

min

aEA,

i(C(a)) = cov/n + o(v/n)

“ In particular we need to prove that random walks do not spend much time

close to their maxima.”
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Motivations

M Crowding” near the maximum: is the maximum lonely at
the top ?

™ Plays an important role in the analysis of the optimal
algorithm to find the maximum of a random walk

= Applications to ““functionals” of the RW and Brownian motion



Searching for the maximum of a RW: optimal algorithm

= Average case optimality

min E(C(a)) = cov/n + o(v/n)

aEA,,

o [T [ L (2 )erf(wz = )dw

after some manipulations...

co = \/glogZ
T

Connection with a functional of the maximum of Brownian motion

z(7) : Brownian motion

f- 1 [} dr
e = o =E(I), I=_ |
€T 0111%1 .’E(T) ( ) A 9 A xmax - .’L'(T)




Searching for the maximum of a RW: optimal algorithm

min E(C(a)) = cov/n + o(+/n)

aEA,,
‘ p— = — — — 1 2
S me () ) T VAT
= Odlyzko described an algorithm Od(n) which is quasi-optimal
2[C(0d(n))] = cov/n + o(v'n)

® Od(n) is quasi-optimal in distribution (not only on average)
and it was shown that

lim Pr (C((\)/dén)) > a:) — Pr(I > z)

—} relevance of a Func’rlonal oF ’rhe maxumum of Browian motion
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Functionals of the maximum of BM in physics

" Largest exit time of classical particles moving ballistically
through a disordered Brownian potential

z(y) : Brownian motion
z(y) 4

Lmax — 0213%(1 w(y)

«

_ dy
Cdt

(%

the slowest particle that crosses the sample is such that

1 [dy 2
5(@) + Z(Y) = Tmax

| NN
and the largest time to cross the sample |sTmax = \/5/0 Vo —2() |




An interesting family of functionals of the maximum of BM

= For o = —1 it describes the cost of Odlyzko s algorithm
1
" For o = ) It describes the largest time to cross a Brownian
barrier

® For oo = +1 it describes an area or “Airy” type of random
variable

— In this work we develop tools to study the statistics
of such functionals of the maximum of BM



Outline

O Path counting method (based on propagators of BM)

O Feynman-Kac approach

O Applications of the Feynman-Kac approach

0 Conclusion



Average number of near-extremal points for RW

M,

\’n steps

® Odlyzko obtained an exact formula for E(D(q,n))

E(D(g,n)) = ) (A(n,m,q) + B(n,m,q))

m={

A(n,m,q) = 2—“([,,,::,1“0 ,z:(; ([’,‘l;;”gJ)

Bma) =2 (1o g 5—: (= +.)

What about the asymptotic limit n — oo ?



Density of near-extremes for Brownian motion

= Asymptotic limit n — oo

%D(Q=L"‘\/HJ ﬁp'r) /Mmax— (7) —r)dr

: Brownian motion

D Orélfé( 1 z(7)

p(r)dr : time spent by the BM in

[wmax — T — dT, Lmax — 7']




Average density of near-extremes for Brownian motion

= Propagator of Brownian motion

Gum(a|B,t)dB =Pr.|z(t) € [8,8+dB] | z(0) = & z(1) < M V7 €[0,t]]

1 _ (B—a)?  (2M—B—a)?
Gum(a|B,t) = 5 e” 2t —eg 21

= Average density of near-extremes: counting paths method

Elp(r, t)] = / E[6(#max — 2(7) — 1))dr

‘ Gu (]\/[ - g‘vat - tmax)
%\k ‘,\
| V W!’ ) ) t\’%‘ ;
AF I i o
! ‘H‘y i /‘“a'» JJ"‘ | ‘M?";I" '
{ ‘r" i x‘

i | o
!"A'\”nl‘l\"‘ : ¥ M W'N X Hﬂhw \ H ajF
f‘,g,re:;:w i;‘:“} \ ; B HH y M; )m\ci f,"u
M — J / &/"[ L iy ﬁf o
h W V& h
WJ wi/uﬁ»,aﬂv m, W”
, (A’* it W
0 volh w
i o ‘ ‘*‘M.‘ |
I i }[5\‘ (i
ﬁjiww m\ M ?‘\W
R N AL
e i i
{0
i
i
J
Gy (0|M —r,7)




Average density of near-extreme: counting paths
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Average density of near-extremes: counting paths

Ep(r, )] = /O E[6 (2 — 2(7) — 1)|dr

= Use of Laplace transform with respect to time ¢

00 o e—\/2_sr . 6—2\/57'
/0 dte” *'E[p(r,t)] =8 (25)372

= And finally...
E[;f,t)]:x/im [p(’",1)] Elp(rt=1)]= 8(2(r)-2®(r)) ,
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Application to the average cost of Odlyzko s algorithm

= Average cost of the optimal algorithm for the search of

the maximum of RW
3[C(0d(n))] = cov/n + o(v/n)

1 [t dr
=E(l)., I = —
“ (1), 2/0 Tmax — Z(T)

= Using the average density of near-extremes of Brownian
1

Blp(r)) = [ Eld(@imas — a(r) = r)ldr motion

——> Cg = %/000 43['O(T)]dr = \/glogZ

T

= For more general functionals of the maximum of BM

1 00 _ 99—« 1+o
T, :/o (Tmax — x(7))%dT , E[T,] :/0 r*p(r)dr = (2 (22_|_ oz)r\(/f )



Average density of near-extremes of constrained BM
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For instance, for the Brownian meander:

0

Elpnre(r)] = V2r (Z An(Z1)" erfc (nr) — erfc (2r)>

2n? +3(—1)" — 5

n=1



Average density of near-extremes of constrained BM
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What about higher moments of such functionals ?



Outline

o Path counting method (based on propagators of BM)

O Feynman-Kac approach

O Applications of the Feynman-Kac approach

0 Conclusion



Exponential functionals of the maximum of BM

®= Functional of the maximum of Brownian motion :

Omax(t) = /0 V(Tmax — x(7))dT

" Goal: compute the Laplace transform of the PDF of O,,..(t):

E {exp (—)\ /O t V (Zmax — a:(T))dTﬂ

s Decompose the path into fwo independent meanders

BM Two independent meanders
Lmax . T da’;
Q; Pr.(tmang):/
‘Jw 0 ‘ o m\/z(t—x)
0 M\ . f"“,ﬂ ",W
(o s / :
HWWI |k Levy S arcsine law
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Reducing to functionals of the Brownian meander

Decompose the path into two independent meanders

BM Two independent meanders
Lmax [ 7 I daj

J Pr. (tpax < T') = /

WW 0 | o m\/z(t — )

1 . o Levy s arcsine law
{J.gm W
| A W Mg
.
| i B
i O i i
O tmax t O t— tmax tmax t

t
E[B—A Jo dTV(:Umax—:U(T))] — / dtmanp(tmaX)gp(t — tmax)
0

o(r) = ——E, {exp (—)\ /O TduV(xMe(u))ﬂ

VT ;\

=== Back fo functionals of the Brownian meander




Feynman-Kac formula

t
E[e—A Jo dTV(a:max—a:(T))] — / dtmaxgp(tmax)gp(t — tmaX)
0

p(T) = \/;—TIEM {exp (—A/OT du V(xMe(u))ﬂ

= Laplace transform with respect fo time ¢

/ e—StE (6—>\ fot V(xmax_x(T))dT) dt p— [@(S)]Q ]
0

B(s) = / T etot) di

which can be computed as p(s) = %/ dyr ug(0)vs(yr)
0

where u,(z),v,(z) are two independent solutions of

(—% dd; AV (2) + 3) (z) =0

such that aljli]%us(a:)
(

=0 and W =u (2)vs(x) — us(z)v.(x)
EI—II—l vs(x) =0



Outline

o Path counting method (based on propagators of BM)

@ Feynman-Kac approach

O Applications of the Feynman-Kac approach

0 Conclusion



Feynman-Kac formula: application to the density
of near-extremes

O (1) = / V (tma — (r))dr

t
= The density of near-extremes p(r,?) / 0(Zmax — —r)dr
0

corresponds to V(z) =d(z — )

= Applying the general formalism to this specific case



Feynman-Kac formula

t
E[e—A Jo dTV(a:max—a:(T))] — / dtmaxgp(tmax)gp(t — tmaX)
0

p(T) = \/;—TIEM {exp (—A/OT du V(xMe(u))ﬂ

= Laplace transform with respect fo time ¢

/ e—StE (6—>\ fot V(xmax_x(T))dT) dt p— [@(S)]Q ]
0

B(s) = / T etot) di

which can be computed as p(s) = %/ dyr ug(0)vs(yr)
0

where u,(z),v,(z) are two independent solutions of

(—% dd; AV (2) + 3) (z) =0

such that aljli]%us(a:)
(
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Feynman-Kac formula: application to the density
of near-extremes

O (1) = / V (tma — (r))dr

t
" The density of near-extremes p(r,?) / 0(Zmax — —r)dT
0

corresponds to V(z) =d(z — )

Applying the general formalism to this specific case

2
/oo st (6—)\/0(7“,75)) I — 1 \/27 —+ )\(1 — e 287”‘)2
0 S \/27 e )\(1 _ 6_2 237“)




Feynman-Kac formula: applications to the density
of near-extremes

From

2
/oo st (6—)\/0(7“,75)) I — 1 \/27 —+ )\(1 — e 287”‘)2
; s \ V25 + A(1 - e2var)

we obtain the moments of arbitrary order

h VI [ g () g
where — = t 2 oYV | — e 'dt
(V2s)7+1 /o (\/f>

These functions were studied in detail in



Feynman-Kac formula: applications to the cost
of Odlyzko s algorithm

Omax(t) = /0 V(Tmax — x(7))dT

, . L 1 ' dT
= The cost of Odlyzko s algorithm is given by I = 5/0 o — 2(7)

which corresponds o V(z) = %

" Applying the general formalism to this specific case

0 A t dT
/ e SR {6_5 Jo wmaxfﬂ(ﬂ} dt
0

o0 )\n n

4 . T
5 2" G e 2 S =)

n=0 k=0

)n—|—1

E(k) — Z (_;k

recovering, in a quite different way, the result of



Feynman-Kac formula: applications to more general
functionals

corresponding to V(xz) = x“

Exact results for the second moment

oo

['(3+2a)(4%T1 —1) Z ['(2+2a+ n)
4(1 4 a)? 247 (1 + o+ n)

n=1



Outline

o Path counting method (based on propagators of BM)

@ Feynman-Kac approach

@ Applications of the Feynman-Kac approach

0 Conclusion



Conclusion and perspectives

= Various tools to study the statistics of functionals of the
maximum of Brownian motion

Application to the full statistics of near-extremal points
of long random walks

Alternative method to study the cost of Odlyzko s optimal
algorithm to find the maximum of long random walks

Extension of these techniques to system with several
random walkers ?

What about more general stable processes ?



