
Near-extremal points of a random walk and variations 
around Odlyzko ’s algorithm for the search of its maximum  

Grégory Schehr
Labo. de Physique Théorique et Modèles Statistiques (LPTMS) 

CNRS-Université Paris-Sud

Séminaire Philippe Flajolet, December 4, 2014

Anthony Perret (LPTMS, Orsay)
Alain Comtet (LPTMS, Orsay)
Satya N. Majumdar (LPTMS, Orsay)

A. Perret, A. Comtet, S. N. Majumdar, G. S., Phys. Rev. Lett. 111, 240601 (2013) 
                             & preprint arXiv:1502.01218 



Near-extremal points of random walks
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Related questions in the literature on random walks
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Local time of RW (and Brownian motion)

Frequently and rarely visited sites : Erdös, Revesz,..., Toth  

Number of times a random walk is at its maximum: Csaki, 
Odlyzko



Motivations

``Crowding’’ near the maximum: is the maximum lonely at 
the top ?
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Plays an important role in the analysis of the optimal 
algorithm to find the maximum of a random walk

Odlyzko ’95
Hwang ’97, Chassaing ’99
Chassaing, Marckert, Yor ’99

Functionals of the maximum of RW and Brownian motion  



Local time of Brownian motion close to its maximum
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Asymptotic limit

Brownian motion

Q: full statistics of the density of near-extremes      ?   
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Search algorithm for the maximum of a RW

Cost of the algorithm: 

         : algorithm that finds 

= number of probes needed

Q: what is the optimal algorithm ?

The simplest algo. probes all the positions: its cost is 

Because of the correlations between the positions of the 
random walker, one can usually do much better



Searching for the maximum of a RW: exploiting correlations

The maximum is found in 4 probes (4 < 14) !



Searching for the maximum of a RW: optimal algorithm

Average case optimality 

Odlyzko ’95

‘‘ In particular we need to prove that random walks do not spend much time 
close to their maxima.’’ 
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Searching for the maximum of a RW: optimal algorithm

Average case optimality 

Odlyzko ’95

after some manipulations...

Hwang ’97, Chassaing ’99

Connection with a functional of the maximum of Brownian motion

Chassaing, Marckert, Yor ’99
Chassaing ’99

Brownian motion



Odlyzko described an algorithm        which is quasi-optimal          

Searching for the maximum of a RW: optimal algorithm

Odlyzko ’95

is quasi-optimal in distribution (not only on average)
and it was shown that         Chassaing, Marckert, Yor ’99

relevance of a functional of the maximum of Browian motion



Functionals of the maximum of BM in physics 

Largest exit time of classical particles moving ballistically 
through a disordered Brownian potential

the slowest particle that crosses the sample is such that

and the largest time to cross the sample is 

Brownian motion



An interesting family of functionals of the maximum of BM  

For          it describes the cost of Odlyzko ’s algorithm

For           it describes the largest time to cross a Brownian 
barrier

For           it describes an area or ``Airy’’ type of random 
variable

In this work we develop tools to study the statistics 
of such functionals of the maximum  of BM

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013 & 2014



Outline

Path counting method (based on propagators of BM)

Feynman-Kac approach 

Applications of the Feynman-Kac approach

Conclusion
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Average number of near-extremal points for RW

Odlyzko obtained an exact formula for Odlyzko ’95

What about the asymptotic limit           ?   



Asymptotic limit

Brownian motion

Density of near-extremes for Brownian motion
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Average density of near-extremes for Brownian motion
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Average density of near-extremes: counting paths method
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Average density of near-extreme: counting paths
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Average density of near-extremes: counting paths

Use of Laplace transform with respect to time 

And finally...

E[⇢(r, t)] =
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E[�(x
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Application to the average cost of Odlyzko ’s algorithm

Average cost of the optimal algorithm for the search of 
the maximum of RW

Using the average density of near-extremes of Brownian 
motion

For more general functionals of the maximum of BM
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A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013 & 2014



Average density of near-extremes of constrained BM
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(a) Brownian motion (b) Brownian bridge

(c) Brownian excursion (d) Brownian Meander

For instance, for the Brownian meander:

E[⇢Me(r)] =
p
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4n(�1)n
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A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013 & 2014



Average density of near-extremes of constrained BM

Brownian motion

Brownian bridge

Brownian meander

Reflected brownian motion

Reflected brownian bridge
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A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013 & 2014

rtyp ⇡ 1/2

What about higher moments of such functionals ?
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Path counting method (based on propagators of BM)

Feynman-Kac approach 

Applications of the Feynman-Kac approach

Conclusion



Exponential functionals of the maximum of BM

Goal: compute the Laplace transform of the PDF of 

Functional of the maximum of Brownian motion :
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Reducing to functionals of the Brownian meander
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Feynman-Kac formula

E[e��

R t
0

d⌧V (x

max

�x(⌧))

] =

Z
t

0

dt

max

'(t

max

)'(t� t

max

)

'(⌧) =

1p
⇡⌧

E
+


exp

✓
��

Z
⌧

0

duV (x

Me

(u))

◆�

Laplace transform with respect to time
Z 1

0
e�stE

⇣
e��

R t
0

V (x
max

�x(⌧))d⌧
⌘
dt = ['̃(s)]2 ,

'̃(s) =

Z 1

0
e�st'(t) dt

which can be computed as '̃(s) =

p
2

W

Z 1

0
dyF u0

s(0)vs(yF )

where              are two independent solutions ofus(x), vs(x)

such that lim
x!0

u

s

(x) = 0

lim
x!+1

v

s

(x) = 0

and W = u

0
s(x)vs(x)� us(x)v

0
s(x)

✓
�1

2

d

2

dx

2
+ �V (x) + s

◆
 (x) = 0

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2014



Outline

Path counting method (based on propagators of BM)

Feynman-Kac approach 

Applications of the Feynman-Kac approach

Conclusion



Feynman-Kac formula: application to the density 
of near-extremes
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 Applying the general formalism to this specific case                      
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Feynman-Kac formula: applications to the density 
of near-extremes
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These functions were studied in detail in Chassaing & Louchard ’02  



Feynman-Kac formula: applications to the cost 
of Odlyzko ’s algorithm
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 The cost of Odlyzko ’s algorithm is given by                      
  
  which corresponds to 

 Applying the general formalism to this specific case                      
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recovering, in a quite different way, the result of Chassaing, Marckert, Yor ’99



Feynman-Kac formula: applications to more general 
functionals

corresponding to 

Exact results for the second moment

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013
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Conclusion and perspectives

Various tools to study the statistics of functionals of the 
maximum of Brownian motion  

Application to the full statistics of near-extremal points 
of long random walks

Alternative method to study the cost of Odlyzko ’s optimal 
algorithm to find the maximum of long random walks

Extension of these techniques to system with several 
random walkers ?

What about more general stable processes ? 


