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Labelled planar graphs

Asymptotic number of labelled planar graphs
|P(n)| ∼ c · n−

7
2γnn!, γ ≈ 27.2

Component structure of a random labelled planar graph
Critical behaviour of a random labelled planar graph
. . .

Question
What about unlabelled graphs?
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Unlabelled planar graphs

Asymptotic number of unlabelled planar graphs
|P(n)| ∼ ???

Component structure of a random unlabelled planar graph
Critical behaviour of a random unlabelled planar graph
. . .

Question
What about unlabelled graphs?
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Component structure of random graphs

Li(m) := # vertices in the i-th largest comp. in a random
graph with n vx’s and m edges, where m = n/2 + s, s = o(n).

Theorem (Bollobás 84; Łuczak 90 )

If s n−2/3 → −∞, whp L1(m) ∼ n2

2s2 log |s|
3

n2 = o(n2/3)

If s n−2/3 → λ ∈ (−∞,∞), whp L1(m) = Θ(n2/3)

If s n−2/3 → +∞, whp L1(m) ∼ 4 s � n2/3,
L2(m) ∼ n2

2s2 log |s|
3

n2 = o(n2/3)

2/3<< 2/3 2/3
>> 2/3<<

n nO(      ) n n
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Component structure of random planar graphs

Li(m) := # vx’s in the i-th largest comp. in a random planar
graph with n vx’s and m edges, where m = n/2 + s, s = o(n).

Theorem (Kang & Łuczak 12)

If s n−2/3 → −∞, whp L1(m) ∼ n2

2s2 log |s|
3

n2 = o(n2/3)

If s n−2/3 → λ ∈ (−∞,∞), whp L1(m) = Θ(n2/3)

If s n−2/3 → +∞, whp L1(m) ∼ 2 s � n2/3

L2(m) = Θ(n2/3)

2/3<<
2/3

>> 2/3
~

2/3
~n

n n
n

Philipp Sprüssel, TU Graz Symmetries of triangulations



Component structure of random planar graphs

Li(m) := # vx’s in the i-th largest comp. in a random planar
graph with n vx’s and m edges, where m = n/2 + s, s = o(n).

Theorem (Kang & Łuczak 12)

If s n−2/3 → −∞, whp L1(m) ∼ n2

2s2 log |s|
3

n2 = o(n2/3)

If s n−2/3 → λ ∈ (−∞,∞), whp L1(m) = Θ(n2/3)

If s n−2/3 → +∞, whp L1(m) ∼ 2 s � n2/3

L2(m) = Θ(n2/3)

2/3<<
2/3

>> 2/3
~

2/3
~n

n n
n

Philipp Sprüssel, TU Graz Symmetries of triangulations



Component structure of random planar graphs

R(m) := # vx’s outside the giant component in a random
planar graph with n vx’s and m edges, m = n + t , t = o(n).

Theorem (Kang & Łuczak 12)

If t n−3/5 → −∞, whp R(m) = (2 + o(1))|t | � n3/5

If t n−3/5 → λ ∈ (−∞,∞), whp R(m) = Θ(n3/5)

If t n−3/5 → +∞, whp R(m) = Θ((n/t)3/2) � n3/5

n >> 3/5
 ~ 3/5

n  << 3/5
n

Philipp Sprüssel, TU Graz Symmetries of triangulations



Component structure of random planar graphs

R(m) := # vx’s outside the giant component in a random
planar graph with n vx’s and m edges, m = n + t , t = o(n).

Theorem (Kang & Łuczak 12)

If t n−3/5 → −∞, whp R(m) = (2 + o(1))|t | � n3/5

If t n−3/5 → λ ∈ (−∞,∞), whp R(m) = Θ(n3/5)

If t n−3/5 → +∞, whp R(m) = Θ((n/t)3/2) � n3/5

n >> 3/5
 ~ 3/5

n  << 3/5
n

Philipp Sprüssel, TU Graz Symmetries of triangulations



Constructions for labelled planar graphs

Planar graphs −→ Planar kernels
(Decomposition)

Constructive: Generating functions
K (x , y)

Kernel
C(x , y) = K (x ,P(x , y))

Core
G(x , y) = C(T (x , y), y)

Planar conn. graph

Planar graphs ←→ 3-conn. cubic planar graphs
Whitney←→ 3-conn. cubic maps

Dual←→ Simple plane triangulations
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Unlabelled planar graphs

Problem: Indistinguishable vertices/edges

Solution: Cycle index sums
Building blocks xa1

1 xa2
2 · · · y

b1
1 yb2

2 · · ·
Information about sizes of orbits ∀f ∈ Aut(G)
Replacements similar to GFs
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Unlabelled planar graphs

With cycle index sums:

Unlabelled planar graphs ←→ · · · ←→ Triangulations

But: different factors depending on symmetries.

Problem
Describe the triangulations with a given set of symmetries.
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Unlabelled Triangulations

Notation
Cells of dim 0,1,2: vertices, edges, and faces
Aut(c,T ): all automorphisms of T that fix a given cell c

Properties of automorphisms

ϕ ∈ Aut(c,T ): uniquely determined by its action on the
cells incident with c
Aut(c,T ) is isomorphic to a subgroup of the dihedral group
Ddeg(c)
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Unlabelled triangulations

Two types of non-trivial automorphisms:

Rotations
(no invariant cells adj. to c)

c

Reflections
(two invariant cells opp. at c)

c
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Unlabelled triangulations

Symmetries of triangulations (Kang & Sprüssel 15+)

If Aut(c,T ) contains a reflection but no rotation,
then it is isomorphic to the 2-element group Z2.
If Aut(c,T ) contains k ≥ 1 rotations but no reflection,
then it is isomorphic to the cyclic group Zk+1.
If Aut(c,T ) contains both reflections and rotations,
then it is isomorphic to a dihedral group Dm with m | deg(c).

c c
c
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Unlabelled triangulations

Symmetries of triangulations (Kang & Sprüssel 15+)
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then it is isomorphic to the 2-element group Z2.
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Triangulations with reflective symmetries

Theorem (Tutte 62)
The invariant cells of a reflection are the elements of a cyclic
sequence C = (c1, . . . , c`) s.t. for each cell ci , its predecessor
and its successor in C lie opposite at ci .

Definition
Girdle G: all vx’s & edges in C and on the b’daries of faces in C

=⇒ induces two near-triangulations ρ
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Triangulations with reflective symmetries

Theorem (K-S 15+)
The triangulations with a reflective but no rotative symmetry are
precisely the ones obtained by choosing

a girdle G and
a near-triangulation ρ with forbidden chords

and attaching a copy of ρ into both sides of G. This is a 2-to-1
correspondence.
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Triangulations with rotative symmetries

Lemma (Tutte 62)
Every rotative automorphism ϕ has precisely one invariant cell
c′ 6= c.

Definition

Spindle S: union of paths P, ϕ(P), . . . , ϕm−1(P) (m order of ϕ)

=⇒ induces m isomorphic near-triangulations ρ
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Triangulations with rotative symmetries

Theorem (K-S 15+)
The triangulations with a rotative symmetry are precisely the
ones obtained by choosing

a spindle S and
a near-triangulation ρ

and attaching a copy of ρ into each segment of S.

But: Every triangulation corresponds to a different number of
spindles and near-triangulations.
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Triangulations with rotative symmetries

Different spindles & near-triangulations for the same
triangulation:
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Triangulations with rotative symmetries

Idea: Eliminate the element of choice in the construction of the
spindle.

Construct spindle S from north to south:
Take all edges going out of c;
Take the leftmost edge for each path;
Go right as far as possible;
Iterate until you reach c′.
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Triangulations with rotative symmetries

Definition (K-S 15+)
Extended spindle S: Defined iteratively from north to south.

Extended spindle might have “bubbles”.
=⇒ induces sets of m isomorphic near-triangulations ρ, β, . . .
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Triangulations with rotative symmetries

Theorem (K-S 15+)
The triangulations with a rotative symmetry are precisely the
ones obtained by choosing

an extended spindle S,
a near-triangulation ρ with additional structure, and
near-triangulations β1, . . . , β`

and attaching copies of ρ into each segment of S and copies of
β1, . . . , β` into each bubble of S. This is a 1-1 correspondence.

Philipp Sprüssel, TU Graz Symmetries of triangulations



Reflective and rotative symmetries

Reminder
If there are both reflections and rotations, then Aut(c,T ) is
isomorphic to a dihedral group Dk with k | deg(c).
Dk contains k reflections and k − 1 rotations.
Every reflection has a girdle.
For every rotation ∃ a unique invariant cell c′ 6= c.

c′ is the same for all rotations.
Girdles intersect only in c and c′.
Every second girdle is isomorphic.
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Reflective and rotative symmetries

Definition (K-S 15+)
Skeleton S: union of the k girdles

=⇒ induces isomorphic near-triangulations ρ
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Reflective and rotative symmetries

Girdles can touch:

isomorphic near-triangulations ρ
near-triangulations ρ1, . . . , ρ`, each appearing 2k times
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Reflective and rotative symmetries

Theorem (K-S 15+)
The triangulations with reflective and rotative symmetry are
precisely the ones obtained by choosing

a skeleton S and
near-triangulations ρ1, . . . , ρ` with forbidden chords

and attaching copies of ρ1, . . . , ρ` into each segment of S. This
is a 2-1 correspondence.
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Summary

Characterization of symmetries of triangulations

Reflective:
Girdle

Rotative:
(Extended) spindle

Reflective & rotative:
Skeleton
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Summary and Outlook

Details:
Cycle index sums for girdles, spindles, and skeletons;
Decomposition scheme for near-triangulations;
Cycle index sums for near-triangulations.

Outlook:
Transfer cycle index sums to cubic 3-conn. maps
3-conn. cubic maps −→ 3-conn. cubic planar graphs

· · ·
−→ Unlabelled planar graphs

Asymptotic numbers
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The end
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