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Context

We consider

F
g
n =

{
(t1, · · · ,tn−1+2g ) transpositions in Sn : t1 · · ·tn−1+2g = (12 · · · n)

}
,

i.e. F
g
n is the set of genus g factorizations of (12 · · · n) in transpositions.

Question (Hurwitz, 1891)

Compute hg ,n := |F g
n |.

Remark: hg ,n is a particular case of Hurwitz number. It has a more
geometric interpretation as the number of genus g covering of the sphere
with given types of ramification points (up to isomorphism).
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(Asymptotic) enumeration of F
g
n

Hurwitz (1891) and Dénes (’59) solved the case g = 0: |F 0
n | = nn−2

(bijective proofs given later by Moszkowski ’89, Goulden–Pepper ’93,
Goulden–Yong ’02, Biane ’05).

General case (Jackson ’88, Shapiro–Shapiro–Vainshtein ’97,
Poulhalon–Schaeffer ’02):

hg ,n = nn−2+2g

22g

g∑
`=0

(
n−1+2g
`+2g

) ∑
µ`g

`(µ)=`

1
Aut(µ)

(
`+2g

2µ1+1, . . . ,2µ`+1

)
.

Proofs use representation theory, no combinatorial proof is known!

In particular, for fixed g , as n tends to +∞,

hg ,n ∼ nn−2+5g

24gg !
.
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Main results

For fixed g > 0, as n tends to +∞, we obtain:
1 An “asymptotic bijection” proving the asymptotic formula

hg ,n ∼ nn−2+5g
24gg ! ;

2 A scaling limit result for a uniform random element in F
g
n .

Motivations:
We need to understand the combinatorial structure (1) in order to
analyze random elements (2);
For (2): there is a large literature on random product of
transpositions: independent transpositions, minimal factorizations into
adjacent transpositions (sorting networks), . . .
Connections with (random) combinatorial maps;
An asymptotic bijection could be a first step towards finding a
bijection. . .
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Our asymptotic bijection Λ (1/2)

We start with:
a factorization F = (t1, . . . ,tn−1+2(g−1)) of (1, . . . ,n) genus g −1;
a pair of positions (v ,w) in [1,n−1+2g ] with v <w ;
a triple of values (a,b,c) in [1,n] with a< b < c ;

Step 1. We define

F 1 = (t1,t2, . . . ,tv−1,(ac),tv , . . . ,tw−2,(ab),tw−1, . . . ,tn−1+2(g−1));

F 2 = (t1,t2, . . . ,tv−1,(ab),tv , . . . ,tw−2,(ac),tw−1, . . . ,tn−1+2(g−1)).
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Easy claim: F 1 and F 2 are either long cycles or product of three cycles.
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Our asymptotic bijection Λ (1/2)

We start with:
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F 2 = (t1,t2, . . . ,tv−1,(ab),tv , . . . ,tw−2,(ac),tw−1, . . . ,tn−1+2(g−1)).

Lemma (F.–Louf–Thévenin, ’21)

For almost all (F ,v ,w ,a,b,c), exactly one of F 1 and F 2 is a factorization
of a long cycle (but not of (1, . . . ,n) in general!).
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Our asymptotic bijection Λ (2/2)

Step 2. Take the F i which is a factorization of a long cycle, say ζ, and
conjugate all transpositions in F i to turn it into a factorization of (1, . . . ,n).
Namely, let σ be such that σ(1)= 1 and σ−1ζσ= (1 · · · n) and let
F i = τ1, . . . ,τn−1+2g ;

We set Λ(F ,v ,w ,a,b,c) := (σ−1τ1σ, . . . ,σ−1τn−1+2gσ).

Λ(F ,v ,w ,a,b,c) is a genus g factorization of (1, . . . ,n). In other words, Λ
maps (almost all) F

g−1
n × ([1,n−1+2g ]

2

)× ([1,n]
3

)
to F

g
n .

Theorem (F.–Louf–Thévenin, ’21)

There exists subsets Ag−1,n ⊂F
g−1
n × ([1,n−1+2g ]

2

)× ([1,n]
3

)
and Cg ,n ⊂F

g
n of

asymptotic proportion 1 such that

Λ :Ag−1,n −→ Cg ,n

is a surjective 2g -to-1 mapping.
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Recovering the asymptotic enumeration of F
g
n

Recall our theorem:

Theorem (F.–Louf–Thévenin, ’21)

There exists subsets Ag−1,n ⊂F
g−1
n × ([1,n−1+2g ]

2

)× ([1,n]
3

)
and Cg ,n ⊂F

g
n of

asymptotic proportion 1 such that

Λ :Ag−1,n −→ Cg ,n

is a surjective 2g -to-1 mapping.

We have

lim
n→+∞

|Ag−1,n|
n5

12 |F
g−1
n |

= 1, lim
n→+∞

|Cg ,n|
|F g

n |
= 1, |Ag−1,n| = 2g |Cg ,n|,

from which we get |F g
n |

|F g−1
n | ∼

n5

24g . An easy induction from |F 0
n | = nn−2 gives

|F g
n | ∼

nn−2+5g

24gg !
.
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Transition

It is convenient (and classical) to represent factorizations as combinatorial
maps.

Reminder? An (oriented) combinatorial map is
a graph with a cellular embedding in an oriented surface without
border;
a graph with the data, for each vertex v , of a circular order on edges
incident to v ; we represent it in the plane with edge crossings.
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Encoding factorizations through maps (1/3)

1 Start with the following factorization in F 2
9 :

(47)(78)(35)(38)(67)(13)(49)(69)(23)(45)(68)(15).

2 For each transposition τi = (j ,k), we draw an edge {j ,k} with label i .
(Around each vertex, edges are oriented counterclockwise in increasing
order of their labels.)

3 Root the map at vertex 1 and forget vertex labels.
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Encoding factorizations through maps (2/3)
Claim: we can recover the vertex labels (and hence the factorization) from
the edge labels.

18

11

5
2

7
10

3

4
9

6

12

1 Find the corner of each vertex which is between the incident edges of
minimal and maximal labels (called special corner).

2 Start at the special corner of the root, turn around the map and label
vertices from 1 to n in increasing order when crossing their special
corner.

NB: to label all vertices, the map must be unicellular!
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Encoding factorizations through maps (3/3)

Definition
A Hurwitz map is an edge-labelled map such that around each vertex,
edges are oriented counterclockwise in increasing order of their labels
(Hurwitz condition).

Theorem (Poulalhon ’02, Irving, ’04)

The construction in the previous slide is a bijection from F
g
n to the set

H
g
n of vertex-rooted unicellular Hurwitz maps with n vertices and genus g .
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Typical structure of unicellular (Hurwitz) maps

Lemma
Take g fixed and n large. Typically, most vertices of a unicellular (Hurwitz)
maps in H

g
n are outside its 2-core.

The 2-core of a map

Proof by analytic combinatorics: one can decompose maps (with a marked
vertex) as a skeleton where we attach trees. . .
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Adding 2 edges to increase the genus

Here is a schematic representation of a Hurwitz map with three marked
vertices: the outer circle is the 2-core which has been unfolded (recall that
the map is unicellular).

A

B C

We want to add two edges {A;B} and {A,C } with labels v and w between
these three vertices. Because of the Hurwitz condition, we need to add
them at specific corners of A, B and C (we do not know which corner
corresponds to v , and which to w !).
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Adding 2 edges to increase the genus

Here is a schematic representation of a Hurwitz map with three marked
vertices: the outer circle is the 2-core which has been unfolded (recall that
the map is unicellular).

A

B C

A

B C

There are two possibilities: one gives a unicellular map, one does not.

−→ exactly one of F 1 and F 2 is a factorization of a long cycle.
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Back to permutations

A

B C

A

B C

Adding two edges {A;B} and {A,C } with labels v and w in the map
corresponds in adding the transposition (ab) and (ac) at positions v
and w ;

The contour order of the face is changing. Hence, the vertex labels are
changing, which explain the conjugation in our asymptotic bijection on
factorizations.
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How to invert the construction? (1/2)

Step 1: identify A. When turning around the unique face of the map, the
corners of A are not visited in counterclockwise order (in our picture, they
are visited in the blue-red-green order). Such a vertex is called a trisection
(Chapuy, ’09).

A

B C
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How to invert the construction? (2/2)

When A is identified, it is typically easy to know which edges have been
added (edges adjacent to A that belong to the 2-core, but not the first
visited one).

A

B C
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How to invert the construction? (2/2)

When A is identified, it is typically easy to know which edges have been
added (edges adjacent to A that belong to the 2-core, but not the first
visited one).

→ the number of pre-image is typically the number of trisections.

Lemma (Chapuy, ’09)

The number of trisectionsa in a unicellular map is 2g .
aCounted with multiplicities but, typically there is no multiplicities.

→ this explains why the map Λ is typically a 2g -to-1 correspondance.
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First application: sampling

Let F be a (random) factorization in F
g−1
n . We set

Λ(F )=Λ(F ,v ,w ,a,b,c),

where v ,w ,a,b,c are taken uniformly at random.

Proposition (F.–Louf–Thévenin, ’21)

Let F 0
n and F g

n be uniform random factorizations of (1, . . . ,n) of genera 0
and g , respectively. Then

lim
n→∞ dTV

(
Λg (F 0

n ),F g
n

)= 0.

Reminder: total variation distance between random variables taking values
in a discrete set S

dTV (X ,Y )= 1
2

∑
k∈S

|P[X = k]−P[Y = k]|.
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where v ,w ,a,b,c are taken uniformly at random.

Proposition (F.–Louf–Thévenin, ’21)

Let F 0
n and F g

n be uniform random factorizations of (1, . . . ,n) of genera 0
and g , respectively. Then

lim
n→∞ dTV

(
Λg (F 0

n ),F g
n

)= 0.

F 0
n is easy to sample in linear time. The proposition gives an algorithm to

sample a asymptotically uniform genus g factorization in linear time.
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Simulation

Random factorizations F 0
n (genus 0) and Λ(F 0

n ) (genus 1) for n= 1000.

Here a transposition (a,b) is encoded by a chord

[exp(−2πi a/n),exp(−2πi b/n)].

Question

What is the scaling limit of (the chord diagram of) F g
n ≈Λg (F 0

n ) ?

V. Féray (CNRS, IECL) Fixed genus factorizations Seminaire Flajolet, 2021–09 18 / 24



Simulation

Random factorizations F 0
n (genus 0) and Λ(F 0

n ) (genus 1) for n= 1000.

Here a transposition (a,b) is encoded by a chord

[exp(−2πi a/n),exp(−2πi b/n)].
Question

What is the scaling limit of (the chord diagram of) F g
n ≈Λg (F 0

n ) ?

V. Féray (CNRS, IECL) Fixed genus factorizations Seminaire Flajolet, 2021–09 18 / 24



Scaling limit in the case g = 0

Theorem (F., Kortchemski, ’18, Thévenin, ’21)

The set of chords associated to F 0
n converges in distribution to Aldous’

Brownian triangulation, denoted L∞ (for the Hausdorff distance on
compact subsets of the disk).

What is Aldous’ Brownian triangulation?
Start from a Brownian excursion X∞ and draw a chord [e−2πi s ,e−2πi t ] for
each tunnel (s ,t) in X∞.
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Scaling limit in higher genus g > 0 (1/2)

We introduce a rotation operation on (set of) chords. Informally, given
three points A,B ,C on the circle, RA,B ,C “swaps” the arcs of circles AB and
BC .

C

A

B

1c2
c1

C

A

D
1

RA,B ,C (c2)

RA,B ,C (c1)

Taking A, B and C uniformly at random, we denote R the corresponding
rotation.
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Scaling limit in higher genus g > 0 (2/2)

Theorem (F., Louf, Thévenin, ’21)

The set of chords associated with F g
n converges in distribution to Rg (L∞),

where L∞ is Aldous’ Brownian triangulation.

(Left) F 0
n is close to L∞ (Right) F 1

n ≈Λ(F 0
n ) is close to R(L∞).
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Scaling limit in higher genus g > 0 (2/2)

Theorem (F., Louf, Thévenin, ’21)

The set of chords associated with F g
n converges in distribution to Rg (L∞),

where L∞ is Aldous’ Brownian triangulation.

Note: we have a “process version” of the result of – where chords are added
one at the time, in the order in which they appear in the factorization.
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Proof strategy

1 We can replace F g
n by Λg (F 0

n ); since F 0
n converges to the Brownian

triangulation, we need to understand the “effect” of Λ.

2 Recall that Λ is defined in two steps:
i) adding transpositions (a,b) and (a,c) to the transpotition;
ii) conjugating all transpositions by some permutation σ.

Lemma (see next slide for a heuristics)

Define

σ̃(j)=


j if j ≤ a or j > c ;
j +c −b if a< j ≤ b;
j −b+a if b < j ≤ c .

Then σ(j)= σ̃(j)+OP(1), except for j in a set of size OP(1).

⇒ Conjugating a transposition by σ̃ acts as RA,B ,C on the associated chord.
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The relabeling permutation σ

On Hurwitz maps, our asymptotic bijection consists in adding two edges;

A

B C

A

B C

To go from Hurwitz maps to permutation factorizations, we need to label
vertices following the unique face of the map.

Key observation. the contour order of the face changes: blue–red–green on
the left and blue–green–red on the right (one can prove that pending trees
are of size OP(1)). ⇒ σ is close to σ̃.
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Thank you for your attention!
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