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Apetizer : convolutions as equivariant layers

Convolutions from �rst principles

From an arbitrary function f , an easy way to construct an invariant version :
1
|T|
∑
t∈T

f (T(I))

In practice, data augmentation :

so that the learned function fθ is such that

fθ(T(I)) ≈ fθ(I)

3

https://dataflowr.github.io/website/modules/extras/Convolutions_first/
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Learning with graph symmetries



Why symmetries matter in machine learning?

Start with a linear regression : your task is to estimate a linear model
β1x1 + · · ·+ βnxn from noisy observations (x, y).

Q : How many parameters do you need to estimate if you know in addition
that the model is invariant to permutation of the input (x1, . . . , xn) ?

A : there is only one parameter to estimate because invariance implies
β1 = · · · = βn.

Q : a linear regression on graphs : estimate a linear function of the adjacency
matrix in Rn×n, how many parameters to estimate?

A : there are only two parameters to estimate for a linear function
f : Rn×n → R invariant to permutation of the rows and columns :

f (A) = α
∑
i=j

Ai,j + β
∑
i 6=j

Ai,j,

whatever the value of n !
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Graph isomorphism

G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection V1 −→ V2
which preserves edges.

Idea : design a machine learning algorithm whose result does not depend
on the representation of the input.
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Alignment of Graphs



Problem : alignment of graphs

These 2 graphs are noisy versions of an original graph : can you align the
vertices ?

6



Result with our GNN

Green vertices are well paired vertices. Red vertices are errors (graph 1).
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Result with our GNN

Green vertices are well paired vertices. Red vertices are errors (graph 2).
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Result with our GNN

Here are the ’wrong’ matchings.

9



Result with our GNN

Superposing the 2 graphs : green edges in both, orange and blue edges in
graph 1 and 2 resp.
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Result with our GNN

Green vertices are well paired vertices. Red vertices are errors.
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Result with our GNN

Matched edges.
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Result with our GNN

Mismatched edges.
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Invariant and Equivariant GNNs



Invariant and equivariant functions

For a permutation σ ∈ Sn, we de�ne (F = Rp feature space) :

• for X ∈ Fn, (σ ? X)σ(i) = Xi
• for G ∈ Fn×n, (σ ? G)σ(i1),σ(i2) = Gi1,i2

G1,G2 are isomorphic i� G1 = σ ? G2.

De�nition
(k = 1 or k = 2)

A function f : Fn
k
→ F is said to be invariant if f (σ ? G) = f (G).

A function f : Fn
k
→ Fn is said to be equivariant if f (σ ? G) = σ ? f (G).

For the graph alignment problem, we used an equivariant GNN from
{0, 1}n×n to Fn.
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Practical GNNs are not universal



A �rst example : Message passing GNN (MGNN)

MGNN takes as input a discrete graph G = (V, E) with n nodes and are
de�ned inductively as : h`i ∈ F being the features at layer ` associated with
node i, then

h`+1i = f
(
h`i ,
{{
h`j
}}

j∼i

)
= f0

h`i ,∑
j∼i

f1
(
h`i ,h`j

) ,

where f or f0 and f1 are learnable functions.

Prop : The message passing layer is equivariant and both expressions above
are equivalent (i.e. for each f , there exists f0 and f1).
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Xu et al. (2019) : MGNN are as powerful as 2-Weisfeiler-Lehman

For k ≥ 2, k-WL(G) are invariants based on the Weisfeiler-Lehman tests
designed for the graph isomorphism problem.

Cor : MGNN are useless on d-regular graphs.
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MGNN are not universal

Prop : MGNN are useless on d-regular graphs (without features).

Another example of a problematic pair for MGNN :

17



Separating power of MGNN

Separation : Let F be a set of functions f de�ned on a set X. The
equivalence relation ρ(F) de�ned by F on X is : for any x, x′ ∈ X,

(x, x′) ∈ ρ(F) ⇐⇒ ∀f ∈ F , f (x) = f (x′) .

Given two sets of functions F and E , we say that F is more separating than
E if ρ(F) ⊂ ρ(E).

Xu et al. (2019) Prop : ρ(MGNN) = ρ(2-WL)
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Waïss Azizian (ICLR21) :
from Separation to Approximation



Stone-Weierstrass theorem

An easy general fact :

If there exists x 6= x′ with (x, x′) ∈ ρ(F), all functions in F take the same
values at x and x′ and F cannot be dense.

Approximation⇒ Separation

If F is an algebra containing the constant function 1, i.e. vector space closed
under pointwise multiplication then : Separation⇔ Approximation.

Pb : we know MGNNs do not separate all graphs !

Sol : we need to relax the separation assumption... and consider
vector-valued functions

19
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Stone-Weierstrass theorem for vector-valued functions with symmetries

Building on the work of Timofte (2005), and we proved :

Theorem
Let F ⊂ CI(X,Rp) be a sub-algebra of continuous invariant functions, (...).

If the set of functions Fscal ⊂ C(X,R) de�ned by,

Fscal = {f ∈ C(X,R) : f1 ∈ F}

is more separating than F , i.e. satis�es,

ρ(Fscal) ⊂ ρ(F) .

Then any function less separating than F can be approximated, i.e.

F =
{
f ∈ CI(X,Rp) : ρ(F) ⊂ ρ(f )

}
.

See our paper for the equivariant version.
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Application to GNNs

For all GNNs studied, the technical condition on Fscal is satis�ed !

As a consequence, we show that :

GNN = {f ∈ C(X,F) : ρ(GNN) ⊂ ρ(f )} .

Recall : ρ(MGNN) = ρ(2-WL)

so that : MGNN = {f ∈ C(X,F) : ρ(2-WL) ⊂ ρ(f )}

More generally, we obtain the expressive power of Linear GNN (k-LGNN) and
Folklore GNN (k-FGNN) with tensors of order k :

k-LGNN = {f ∈ C(X,F) : ρ(k-WL) ⊂ ρ(f )}
k-FGNN = {f ∈ C(X,F) : ρ((k + 1)-WL) ⊂ ρ(f )}

21
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Learning with (practical i.e. k = 2) FGNN



Better expressive power with FGNN

(Maron et al., 2019) adapted the Folklore version of the Weisfeiler-Lehman
test to propose the folklore graph layer (FGL) :

h`+1i→j = f0

(
h`i→j,

∑
k∈V

f1
(
h`i→k

)
f2
(
h`k→j

))
,

where f0, f1 and f2 are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to
MGNN where messages are associated with vertices.

FGNN : a FGNN is the composition of FGLs and a �nal invariant/equivariant
reduction layer from Fn

2
to F/Fn.
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A small diversion

Prop : Let f : [0, 1]2×n → R be a continuous function. f is invariant if and only
if there exist continuous functions ρ : RM → R,Φ1 : [0, 1]→ RM and
Φ2 : [0, 1]→ RM such that

f
(
(xk, yk)nk=1

)
= ρ

( n∑
k=1

Φ1(xk)Φ2(yk)

)
,

where the product Φ1(xk)Φ2(yk) is component-wise and M =
(n+2

2
)
.

Proof : The ring of multisymmetric polynomials in n (vector-valued) variables
is generated by the multisymmetric power sums of total degree ≤ n :
pα(x1, y1, x2, y2, . . . , yn) =

∑n
i=1 x

α1
i y

α2
i , with α1 + α2 ≤ n.

Newton identities relating elementary symmetric functions and power sums.
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A question...

What happens for polynomials p ∈ R[X11, X12, ..., Xnn] in n2 variables which
are invariant with respect of the action of the symmetric group as follows :

p(x11, x12, ..., xnn) = p(xσ(1)σ(1), xσ(2)σ(2), ..., xσ(n)σ(n)).

In words, the input of the polynomial is a n× n matrix and it should be
invariant to the permutation of its rows and columns. I would like to know
about explicit generators in this setting ; a minimal set ?

A reference?
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Properties of Folklore GNN (FGNN)

(Maron et al., 2019) Prop : FGL is equivariant and ρ(FGNN) = ρ(3-WL).

Approximation for FGNN :

FGNN = {f ∈ C(X,F) : ρ(3-WL) ⊂ ρ(f )}

FGNN has the best power of approximation among all architectures working
with tensors of order 2 presented so far.
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Learning the graph alignment problem with Siamese FGNNs

G1 ∈ {0, 1}n
2

E1 ∈ Rn×b

E1ET2 ∈ Rn2

G2 ∈ {0, 1}n
2

E2 ∈ Rn×b

FGNN

FGNN

From the node similarity matrix E1ET2 , we extract a mapping from nodes of G1
to nodes of G2.

26



Graphs distributions

We tested on two graphs distributions :

Erdős–Rényi : each edge added with some probability p
d-Regular : each node has d neighbors
→ considered as hard examples

27



Results on synthetic data

• Graphs : n = 50, density = 0.2
• Training set : 20000 samples
• Validation and Test sets : 1000 samples

SDP from (Peng et al., 2010), message passing from (Nowak et al., 2018).
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Generalization property

Each line corresponds to a model trained at a given noise level and shows
its accuracy across all noise levels.
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Comparison with BPAlign

Comparison with a recent smart algorithm designed with Luca Ganassali and
Laurent Massoulié : Correlation detection in trees for partial graph alignment

30

https://arxiv.org/abs/2107.07623v2


Conclusion

The Bitter Lesson by Rich Sutton

The biggest lesson that can be read from 70 years of AI research is that
general methods that leverage computation are ultimately the most
e�ective, and by a large margin. The ultimate reason for this is Moore’s law
(...) Seeking an improvement that makes a di�erence in the shorter term,
researchers seek to leverage their human knowledge of the domain, but the
only thing that matters in the long run is the leveraging of computation.
These two need not run counter to each other, but in practice they tend to.
(...) the human-knowledge approach tends to complicate methods in ways
that make them less suited to taking advantage of general methods
leveraging computation.

31

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Thank You!
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