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Continued fractions

We consider a positive real number α.

One looks for sequences of rational numbers (pn/qn)n

that satisfies
lim pn/qn = α

Continued fractions allow to do it with exponential speed

|α− pn/qn| ≤
1
q2

n

||qnα|| ≤
1
qn



Euclid algorithm
We start with two nonnegative integers u0 and u1

u0 = u1

[
u0

u1

]
+ u2

u1 = u2

[
u1

u2

]
+ u3

...

um−1 = um

[
um−1

um

]
+ um+1

um+1 = gcd(u0,u1)

um+2 = 0

One subtracts the smallest number from the largest as
much as we can



Euclid algorithm and continued fractions
We start with two coprime integers u0 and u1

u0 = u1a1 + u2

...

um−1 = umam + um+1

um = um+1am+1 + 0

um+1 = 1 = gcd(u0,u1)

u1

u0
=

1
a1 + u2

u1

u1/u0 =
1

a1 +
1

a2 +
1

. . . + 1
am+ 1

am+1
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Matricial description
We start with two positive real numbers (x0, x1) with
x0 > x1

We divide the largest entry by the smallest and we
continue

x0 = bx0/x1cx1 + x2 a1 := bx0/x1c

(
x0
x1

)
=

(
a1 1
1 0

)(
x1
x2

)
=

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
xn
xn+1

)

We normalize α := x1/x0 and we set

Mn :=

(
an 1
1 0

)
;
(

1
α

)
∈
⋂
n

M1 · · ·MnR2
+

M1 · · ·Mn =

(
qn qn−1
pn pn−1

)
; a sequence of lattice bases for Z2
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Multidimensional continued fractions

If we start with two parameters (α, β), one looks for two
sequences of rational numbers (pn/qn) and (rn/qn) with
the same denominator that satisfy

lim pn/qn = α lim rn/qn = β

Expected speed 3/2

|α− pn/qn| ≤ 1/q3/2
n |β − rn/qn| ≤ 1/q3/2

n



Dirichlet’s bound and exponential
convergence

Dirichlet’s theorem We are given a d-dimensional real
vector α = (α1, · · · , αd ) ∈ [0,1]d . For any positive integer
N, there exist integers p1, . . . ,pd ,q with

1 ≤ q ≤ N

such that

|pi − qαi | <
1

N1/d i = 1,2, · · · ,d



Dirichlet’s bound and exponential
convergence

Dirichlet’s theorem We are given a d-dimensional real
vector α = (α1, · · · , αd ) ∈ [0,1]d . For any positive integer
N, there exist integers p1, . . . ,pd ,q with

1 ≤ q ≤ N

such that

|pi − qαi | <
1

N1/d ≤
1

q1/d i = 1,2, · · · ,d

Dirichlet’s bound 1 + 1/d∣∣∣∣pi

q
− αi

∣∣∣∣ ≤ 1

q1+ 1
d

||qα|| ≤ 1
q1/d



Canonicity of continued fractions

Euclid’s algorithm Starting with two numbers, one
subtracts the smallest from the largest
Unimodularity

det

(
qn+1 qn

pn+1 pn

)
= ±1

Best approximation property

Theorem A rational number p/q is a best
approximation of the real number α if every p′/q′ with
1 ≤ q′ ≤ q, p/q 6= p′/q′ satifies

|qα− p| < |q′α− p′|

Every best approximation of α is a convergent



From SL(2,N) to SL(3,N)
SL(d ,N): matrices with entries in N and determinant 1
GL(d ,N): matrices with entries in N and determinant ±1

SL(2,N) is a finitely generated free monoid. It is
generated by (

1 0
1 1

)
and

(
1 1
0 1

)
SL(2,N) is a free and finitely generated monoid

SL(3,N) is not free

SL(3,N) is not finitely generated. Consider the family
of matrices  1 0 n

1 n − 1 0
1 1 n − 1


These matrices are undecomposable for n ≥ 3 [Rivat]



Multidimensional continued fractions
There is no canonical generalization of continued
fractions to higher dimensions

Several approaches are possible
Best simultaneous approximations
Every q′ with 1 ≤ q′ < q satisfies |||q(α, β)||| < |||q′(α, β)|||
But we loose unimodularity, and the sequence of best
approximations depends on the chosen norm [Lagarias]
Klein polyhedra and sails [Arnold]
Unimodular multidimensional Euclid’s algorithms

sequences of nested cones approximating a
direction Jacobi-Perron algorithm, Brun algorithm
[Brentjes, Schweiger]

lattice reduction (LLL)
[Lagarias],[Ferguson-Forcade], [Just],
[Grabiner-Lagarias][Bosma-Smeets][Beukers]



What is expected?
We are given (α1, · · · , αd ) which produces a sequence of
basis of Zd+1 and/or a sequence of approximations

Arithmetics A two-dimensional continued fraction
algorithm is expected to

detect integer relations for (1, α1, · · · , αd )

give algebraic characterizations of periodic
expansions
converge sufficiently fast
provide good rational approximations

Good means “with respect to Dirichlet’s theorem”: there
exist infinitely many (pi/q)1≤i≤d such that

max
i
|αi − pi/q| ≤

1
q1+1/d



We also want...

to understand generic behaviour

to be able to control the number of executions if the
parameters are rational etc.
Hausdorff dimensions for bounded digit sets etc.



We also want...

to understand generic behaviour
Continued fractions

lim
log qn

n
=

π2

12 log 2
= 1.18... for a.e. α

lim
1
n
{k ≤ n; ak = a} =

1
log 2

log
(k + 1)2

k(k + 2)
for a.e. α

to be able to control the number of executions if the
parameters are rational etc.
Hausdorff dimensions for bounded digit sets etc.



We also want...

to understand generic behaviour

to be able to control the number of executions if the
parameters are rational etc.

Continued fractions `(u, v): number of steps in Euclid
algorithm. For 0 < v < u ≤ N and gcd(u, v) = 1

EN(`) ∼ 12 log 2
π2 ·log N average case [Baladi-Vallée]

Hausdorff dimensions for bounded digit sets etc.



Multidimensional continued fractions

Aim Write x ∈ ∆ ⊆ [0,1]d as x = limn→∞
p(n)

q(n)

We consider MCF algorithms given by a piecewise
constant transformation

A : ∆→ GL(d + 1,Z)

with associated transformations

TA : ∆→ ∆, x 7→ π
(
ι(x) A(x)−1)

ι(x1, . . . , xd ) = (1, x1, . . . , xd ), π(x0, x1, . . . , xd ) =
( x1

x0
, . . . , xd

x0

)



Toward the Gauss map
Let (x0, x1) with x0 > x1 > 0. We divide the largest entry
by the smallest and we continue

x0 = bx0/x1cx1 + x2 a1 := bx0/x1c

(
x0
x1

)
=

(
a1 1
1 0

)(
x1
x2

)
=

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
xn
xn+1

)

Let α := x1/x0. One has α ∈ [0,1]. Let T (α) = 1/α− [1/α].(
1
α

)
= α

(
[1/α] 1
1 0

)(
1
T (α)

)

(
1
α

)
= α · · ·T n−1(α)

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
1
T n(α)

)
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Multidimensional continued fractions
We consider MCF algorithms given by a piecewise
constant transformation

A : ∆→ GL(d + 1,Z)

with associated transformations

TA : ∆→ ∆, x 7→ π
(
ι(x) A(x)−1)

ι(x1, . . . , xd ) = (1, x1, . . . , xd ), π(x0, x1, . . . , xd ) =
( x1

x0
, . . . , xd

x0

)

Regular continued fractions with d = 1 A(x) =

(⌊
1
x

⌋
1

1 0

)

T (x) = π

(
(1, x)

(
0 1
1 −

⌊
1
x

⌋)) = π
(
x ,1−

⌊
1
x

⌋
x
)

=
1
x
−
⌊

1
x

⌋
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Continued fractions and dynamical systems

Consider the Gauss map

T : [0,1]→ [0,1], x 7→ {1/x}

x1 = T (x) = {1/x} = 1
x
−
[

1
x

]
=

1
x
− a1

x =
1

a1 + x1
an =

[
1

T n−1x

]

x =
1

a1 +
1

a2 +
1

a3 + · · ·



Continued fractions and dynamical systems
Consider the Gauss map

T : [0,1]→ [0,1], x 7→ {1/x}

2. SUMMARY OF CLASSICAL RESULTS 

The Gauss Map. We begin with the classical method for finding the continued 

fraction representation of a number y. We put no equal to the integer part of y, 

by which we mean the greatest integer less than or equal to y. If the fractional part 

of y is not zero, we put yo equal to the fractional part of y. We then invert yo, 

and put n, equal to the integer part of l /yo .  Similarly we put y, equal to the 

fractional part, and repeat. Note that no may be positive, negative, or zero, but 

that all the subsequent n, will be positive, and that each y, is in the interval [O, 1). 

This process gives us unique continued fraction for each starting point y, and the 

process terminates if and only if y is rational. (For any rational y there is one 

other simple continued fraction which is only trivially different from the one 

generated by this algorithm.) This algorithm is related to the Euclidean algorithm 

for finding the greatest common divisor (gcd) of two integers k and m (Olds 

[1963]), in that if we use this method to find the continued fraction of k/m, then 

the integer parts that arise are precisely the quotients that arise in the Euclidean 

algorithm, and in fact the last nonzero remainder from the Euclidean algorithm 

appears as the numerator of the last nonzero fractional part. This remainder is of 

course the gcd of k and m. Further, this algorithm can easily be seen to terminate 

in O(log(min(k, m)))operations. Classically, most attention has been paid to the 

integers generated by this algorithm, which make up the continued fraction itself. 

However, Gauss was apparently the first to study the other part of this algorithm, 

which we present as the following map, called the Gauss map (Mafi6 [I98711 (see 

FIGURE 1): 

i f x = O  

mod 1 otherwise 

Figure 1. The graph o f  the Gauss Map G(x).  Note that there are an infinite number o f  jump 

discontinuities at values o f  x = l / n ,  for integers n .  In addition, there is a pole at the origin. The 

darkening o f  the curve towards the origin is suggestive o f  the fractional nature o f  the capacity 

dimension. 

We use the notation "mod 1" to mean taking the fractional part. In terms of the 

Gauss map G, our algorithm then becomes 

y,,, = fractional part of l /y ,  = G ( y k )  

n,,, = integerpartof l /y , ,  f o r k  = 0 , 1 , 2 , 3  , . . .  

and we see that the continued fraction is generated as a byproduct of the iteration 

of the Gauss map. Thus we expect that any classical results on continued fractions 

will have implications for the dynamics of the Gauss map. 

204 R. M. CORLESS [March 

T (x) = {1/x} = 1
x
−
[

1
x

]
=

1
x
− a1

1
k + 1

< x ≤ 1
k

; a1 = k



Jacobi-Perron algorithm (1868-1907)
Consider the Jacobi-Perron algorithm. Its projective
version is defined on the unit square [0,1]2 by

(x , y) 7→
(

y
x
−
⌊y

x

⌋
,

1
x
−
⌊

1
x

⌋)
=

({y
x

}
,

{
1
x

})
.

With x = b/a, y = c/a, its linear version is defined on the
positive cone {(a,b, c) ∈ R3|0 < b, c < a} by

(a,b, c) 7→ (a1,b1, c1) = (b, c − bc/bcb,a− ba/bcb).

Set C = bc/bc, A = ba/bc. One has a
b
c

 =

 A 0 1
1 0 0
C 1 0

 a1

b1

c1

 =

 A 0 1
1 0 0
C 1 0

 b
c − Cb
a− Ab

 .



Continued fractions

α 7→
(

1
α
− b1

α
c
)

(
1
α

)
= α0α1 · · ·αn−1

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
1
αn

)
Jacobi–Perron

(α, β) 7→
(
β

α
−
⌊
β

α

⌋
,

1
α
−
⌊

1
α

⌋)
=

({
β

α

}
,

{
1
α

})
.

 1
α
β

 = α0 · · ·αn−1

 qn q′n q′′n
pn p′n p′′n
rn r ′n r ′′n

 1
αn

βn





Theorem of Perron–Frobenius type
One considers an infinite product of matrices

E1 · · ·Ek · · ·

with entries in N. One assumes that there exists a matrix
B with strictly positive entries s.t. there exist
i1 < j1 < · · · < ik < jk s.t.

B = Ei1 · · ·Ej1 , · · · ,B = Eik · · ·Ejk , · · · .

Then, the intersection of the cones

∩k E1 · · ·Ek (Rn
+)

is unidimensional [Furstenberg]

; Convergence



Convergence for simultaneous approximations

M1 · · ·Mn =


q(n)

1 · · · q(n)
d+1

p(n)
1,1 · · · p(n)

1,d+1
· · ·

p(n)
d ,1 · · · p(n)

d ,d+1

;

(
p(n)

1,j

q(n)
j

, · · · ,
p(n)

d ,j

q(n)
j

)

Weak convergence Convergence in angle

lim
n→+∞

(
p(n)

1,j

q(n)
j

, · · · ,
p(n)

d ,j

q(n)
j

)
= (α1, · · · , αd )

Strong convergence Convergence in distance

lim
n→+∞

|q(n)
j αi − p(n)

i,j | = 0 for all i , j



Convergence of Jacobi-Perron algorithm

Theorem [Broise-Guivarc’h’99] There exists δ > 0 s.t. for
almost every (α, β)

|α− pn/qn| <
1

q1+δ
n

, |β − rn/qn| <
1

q1+δ
n

where pn,qn, rn are produced by either by Jacobi-Perron
algorithm

What is the dependence of δ with respect to the number
of parameters?



Lyapunov exponents
We consider a MCF algorithm given by a piecewise
constant transformation

A : [0,1]d → GL(d + 1,Z)

with its associated transformation ([0,1]d ,TA, ν). We
assume ν ergodic. Let

A(n)(u) = A(u)A(TAu) · · ·A(T n−1
A u).

We assume log+ ||A(x)|| is ν-integrable
(log+(a) = max{log a,0} for a > 0).

Then by the Oseledets Theorem the following Lyapunov
exponents λk , 1 ≤ k ≤ d+1, exist

λ1 + · · ·+ λk = lim
n→∞

1
n

log ‖ ∧k A(n)(u)‖ for ν-a.e. u ∈ ∆.



Lyapunov exponents

An(x) =

(
qn qn−1

pn pn−1

)
Theorem For a.e. x ,

lim
1
n

log qn =
π2

12 log 2
= 1.18 · · · = λ1

λ1 is the first Lyapunov exponent

First Lyapunov exponent = “log largest eigenvalue” ;
size of the matrices/convergents An(x) ∼ qn(x) ∼ eλ1n

Number of steps in Euclid’s algorithm = size/ log
eigenvalue

log N/λ1

Second Lyapunov exponent = "log of the second
eigenvalue" ; measures the distance between column
vectors



Lyapunov exponents

First Lyapunov exponent = log largest eigenvalue; size
of the matrices/convergents M(n)(α) ∼ qn

i (α) ∼ eλ1n

Second Lyapunov exponent = "log of the second
eigenvalue" ; measures the distance between column
vectors

M(n)(α) =


q(n)

1 · · · q(n)
d+1

p(n)
1,1 · · · p(n)

1,d+1
· · ·

p(n)
d ,1 · · · p(n)

d ,d+1


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vectors
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
q(n)

1 · · · q(n)
d+1

p(n)
1,1 · · · p(n)

1,d+1
· · ·

p(n)
d ,1 · · · p(n)

d ,d+1



λ1 ↔ log ‖M(n)‖

λ1 + λ2 ↔ log ‖ ∧2 M(n)‖ ↔ log ‖c(n)
i ∧ c(n)

j ‖

λ2 distance between column vectors

Dirichlet’s bound 1 + 1/d vs. 1− λ2/λ1



Lyapunov exponents
First Lyapunov exponent = log largest eigenvalue; size
of the matrices/convergents M(n)(α) ∼ qn

i (α) ∼ eλ1n

Second Lyapunov exponent = "log of the second
eigenvalue" ; measures the distance between column
vectors

M(n)(α) =


q(n)

1 · · · q(n)
d+1

p(n)
1,1 · · · p(n)

1,d+1
· · ·

p(n)
d ,1 · · · p(n)

d ,d+1



lim
1
n
log(q1/d

n ||qnx ||) = λ1

d
+λ2 =

(λ2 − λ3) + · · ·+ (λ2 − λd+1)

d

since λ1 + · · ·+ λd+1 = 0

Hence λ1
d + λ2 = 0 if and only if λ2 = · · · = λd+1 = −1/d



Higher-dimensional case
Numerical experiments indicate that classical
multidimensional continued fraction algorithms seem to
cease to be strongly convergent for high dimensions. The
only exception seems to be the Arnoux-Rauzy algorithm
which, however, is defined only on a set of measure zero
[B.-Steiner-Thuswaldner]

d λ2(AJ) 1− λ2(AJ)
λ1(AJ)

d λ2(AJ) 1− λ2(AJ)
λ1(AJ)

2 −0.44841 1.3735 7 −0.02819 1.0243
3 −0.22788 1.1922 8 −0.01470 1.0127
4 −0.13062 1.1114 9 −0.00505 1.0044
5 −0.07880 1.0676 10 +0.00217 0.9981
6 −0.04798 1.0413 11 +0.00776 0.9933

Table: Heuristically estimated values for the second Lyapunov
exponent and the uniform approximation exponent of the
Jacobi–Perron Algorithm
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Theorem [Duke-Rudnick-Sarnak] One has

{M ∈ GL(n,Z), |mij | ≤ T} ∼ cnT n2−n

What is a random matrix in GLn(Z)?



From lattice reduction to contined fractions
In a letter to Jacobi in 1850, Hermite explained the
following idea
Consider 

1 0 · · · 0 −α1

0 1 · · · 0 −α2

· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd

0 · · · · · · 0 t


Let t > 0. We take the corresponding lattice Λt of Rd+1

Ze1 + · · ·+ Zed + Z(ted+1 − (α1e1 + · · ·+ αded ))

A vector of the lattice is of the form
d∑

i=1

(pi − qtαi)ei + qted+1

Take a short vector in Λt



How does LLL produce good approximations?

Let

Mt :=


1 0 · · · 0 −α1
0 1 · · · 0 −α2
· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd
0 · · · · · · 0 t





How does LLL produce good approximations?

Let

Mt :=


1 0 · · · 0 −α1
0 1 · · · 0 −α2
· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd
0 · · · · · · 0 t



We take t small
One has det(Mt) = t

Rem: One changes the lattice at each step
instead of changing the bases of a fixed lattice
The parameter t only occurs in the last line



How does LLL produce good approximations?
Let

Mt :=


1 0 · · · 0 −α1
0 1 · · · 0 −α2
· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd
0 · · · · · · 0 t


LLL produces in polynomial time a vector b1

such that

||b1|| ≤ 2d/4det(Mt)
1/d+1 = 2d/4t1/d+1

One has

b1 = (p1 − qα1)e1 + · · ·+ (pd − qαded) + qted+1

∀i , |pi−αiq| ≤ 2d/4t1/d+1 and qt ≤ 2d/4t1/d+1

; ∀i , |pi − αiq| ≤ 2(d+1)/41/q1/d



Lattice reduction algorithms
Lattice reduction is based on the following elementary
basis transformations on the vectors of the basis
(b1, ...,bd+1)

size reduction the vector bi is replaced by bi − λbj ,
1 ≤ j < i
swaps one exchanges bi and bi+1

These operations are decided with respect to the
Gram-Schmitdt orthogonalization of the basis b

b∗i = bi −
i−1∑
j=1

µi,jb∗j µi,j =
〈bi ,b∗j 〉
〈b∗j ,b∗j 〉

Size reduction |µi,j | ≤ 1/2 for i > j
Lovász condition (δ − µ2

i+1,i)||b∗i ||2 ≤ ||b∗i+1||2



[Lagarias’94] Let t tend to 0 and consider Minkowski
reduction. The conditions are linear in

√
t but when n = 7,

the number of inequalities is about 90,000 for Minkowski
reduction.
[Bosma-Smeets’2013] Decrease the value of t by diving it
by a fixed constant.
[Beukers’2014]
Proves the linearity in

√
t of the conditions in LLL.

The values of t > 0 for which Mt is LLL-reduced form an
interval [t0, t1].
If α 6∈ Qd , the sequence of critical points is an infinite
sequence descending to 0.



Toward continued fractions

One has t ↓ 0
How to change t?
How much does one have to recompute when one
changes t?
How to choose stopping times for t?
Can we get nonnegative matrices?
What are the rules that provide exponential
convergence?
Can we evaluate the growth of the size of the
matrices M1 · · ·Mn?
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