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@ Multidimensional continued fractions
@ On the second Lyapunov exponent

@ Lattice reduction and unimodular matrices



Continued fractions

We consider a positive real number a.

One looks for sequences of rational numbers (p,/qn)n
that satisfies

Continued fractions allow to do it with exponential speed
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Euclid algorithm

We start with two nonnegative integers up and uy
Up = u Y + U
0 — 1 U 2

us
Uy =Uu |— | + U
Uz

Um—1

Un-1 = Un |: :| + Umn1

m
Um+1 = gcd(Uo, Uy )
Unyo = 0

One subtracts the smallest number from the largest as
much as we can



Euclid algorithm and continued fractions
We start with two coprime integers up and uy

U = 1@ + Uz

Un—1 = Un@m + Umny1
Un = Uny1@met + 0

Umi1 =1 =gcd(uo, ur)



Euclid algorithm and continued fractions
We start with two coprime integers up and uy

U = 1@ + Uz

Un—1 = Un@m + Umny1
Un = Uny1@met + 0

Umi1 =1 =gcd(uo, ur)

U4 1 1

T Uy /o =
Up a1+£ /

uq a1 +
a +
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Matricial description
We start with two positive real numbers (xo, x1) with
Xo > X4
We divide the largest entry by the smallest and we
continue

Xo = LX()/X1JX1 + Xo a = LXo/X1J

(3)-( D))= ) (5



Matricial description
We start with two positive real numbers (xo, x1) with
Xo > X4
We divide the largest entry by the smallest and we
continue

Xo = LX()/X1JX1 + Xo a = LXo/X1J

()= (o) ()= (F o) (o) (%)

We normalize « := xq/x9 and we set



Multidimensional continued fractions

If we start with two parameters («a, 8), one looks for two
sequences of rational numbers (p,/qg,) and (r,/gn) with
the same denominator that satisfy

lim pn/qn = a lim rp/qn = 8

o — P/ Gnl < 1/G5° 18— ra/anl < 1/G3°



Dirichlet’s bound and exponential
convergence

Dirichlet’s theorem We are given a d-dimensional real
vector a = (ay, -+ -, ag) € [0, 1]9. For any positive integer
N, there exist integers py, ..., pg, g with

1<g<N

such that

’pf_qal|<N1/d i:172>"'ad



Dirichlet’s bound and exponential

convergence
Dirichlet’s theorem We are given a d-dimensional real
vector a = (o, - - -, ag) € [0, 1]9. For any positive integer

N, there exist integers py, ..., pg, g With
1<g<N

such that

1 1 .
|p qal|<N1/d—q1/d I:1727"'7d
Dirichlet’s bound 1 +1/d
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q
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Canonicity of continued fractions

@ Euclid’s algorithm Starting with two numbers, one
subtracts the smallest from the largest

@ Unimodularity

Pn+1 Pn
@ Best approximation property

det( Qn+1 qn ) — +1

Theorem A rational number p/q is a best
approximation of the real number « if every p’/q' with

1<q9 <q,p/q+#p/q satifies
|ga —p| < |q'a—p|

Every best approximation of « is a convergent



From SL(2,N) to SL(3, N)
SL(d,N): matrices with entries in N and determinant 1
GL(d,N): matrices with entries in N and determinant +1

SL(2,N) is a finitely generated free monoid. It is

generated by
10 1 1
(1 1 > and (0 1 >

@ SL(2,N)is a free and finitely generated monoid
@ SL(3,N) is not free

@ SL(3,N) is not finitely generated. Consider the family

of matrices
10 n
1 n—-10
1 1 n—1

These matrices are undecomposable for n > 3 [Rivat]



Multidimensional continued fractions
There is no canonical generalization of continued
fractions to higher dimensions

Several approaches are possible
@ Best simultaneous approximations
Every ¢’ with 1 < @’ < g satisfies |||g(«, 5)||| < |||9'(«, 5)|]|
But we loose unimodularity, and the sequence of best
approximations depends on the chosen norm [Lagarias]
@ Klein polyhedra and sails [Arnold]
@ Unimodular multidimensional Euclid’s algorithms

e sequences of nested cones approximating a
direction Jacobi-Perron algorithm, Brun algorithm
[Brentjes, Schweiger]

e lattice reduction (LLL)
[Lagarias],[Ferguson-Forcade], [Just],
[Grabiner-Lagarias][Bosma-Smeets][Beukers]



What is expected?
We are given (a4, - - - , ag) Which produces a sequence of
basis of Z9*! and/or a sequence of approximations

Arithmetics A two-dimensional continued fraction
algorithm is expected to

@ detect integer relations for (1, a4, -+ , ay)
@ give algebraic characterizations of periodic
expansions

@ converge sufficiently fast
@ provide good rational approximations

Good means “with respect to Dirichlet’s theorem”: there
exist infinitely many (p;/q)1<i<q such that

1
m,.aX i — pi/q] < W



We also want...
@ to understand generic behaviour

@ to be able to control the number of executions if the
parameters are rational etc.

@ Hausdorff dimensions for bounded digit sets etc.



We also want...

@ to understand generic behaviour
Continued fractions

loggn 2

lim = 12|0g2:1.18... fora.e. a
1 1 (k+1)?
—{k<n; a=a}l= for a.e.
lim n{k <n; a=a} Iog2|0g k(k 1 2) ora.e. o

@ to be able to control the number of executions if the
parameters are rational etc.

@ Hausdorff dimensions for bounded digit sets etc.



We also want...
@ to understand generic behaviour

@ to be able to control the number of executions if the
parameters are rational etc.

Continued fractions ¢(u, v): number of steps in Euclid
algorithm. For 0 < v < u < N and gecd(u, v) =1

12log 2

]EN(E) ~ 2

log N average case [Baladi-Vallée]

@ Hausdorff dimensions for bounded digit sets etc.



Multidimensional continued fractions

. . ()
Write x € A C [0,1]7 as x = lim, . &5

We consider MCF algorithms given by a piecewise
constant transformation

A:A— GL(d+1,72)
with associated transformations
Ta: A=A, x> 7(u(x)AX)")

uX,... . Xa) =(1,%1,..., Xq), 7(Xo0,X1,...,Xq) = (&

XO,...



Toward the Gauss map
Let (xo, x1) with xo > x4 > 0. We divide the largest entry
by the smallest and we continue

Xo = |_X0/X1JX1 + Xo a = LXo/X1J

()= (o) (R)=(F o) (7o)



Toward the Gauss map
Let (xo, x1) with xo > x4 > 0. We divide the largest entry
by the smallest and we continue

Xo = |_X0/X1JX1 + Xo a = LXo/X1J

() =T o) (e)=(F o) (o)(h,)

Let a := x1/Xp. One has a € [0,1]. Let T(«v) = 1/av — [1/a].

<l>:“<[11/a] 3)<1T(a)>



Toward the Gauss map
Let (xo, x1) with xo > x4 > 0. We divide the largest entry
by the smallest and we continue

Xo = |_X0/X1JX1 + Xo a = LXo/X1J

()= (o) (R)=(F o) (7o)

Let a := x1/Xp. One has a € [0,1]. Let T(«v) = 1/av — [1/a].

<l>:“<[11/a] 3)(;@))



Multidimensional continued fractions
We consider MCF algorithms given by a piecewise
constant transformation

A:A—GL(d+1,72)
with associated transformations

Ta: A=A, x—=7(u(x)AX)")

X1

L(X1,...,Xd)I(1,X1,...,Xd), 7T(X0,X1,...,Xd): (X—O,...

Xd
) XO



Multidimensional continued fractions
We consider MCF algorithms given by a piecewise
constant transformation

A:A—GL(d+1,72)
with associated transformations
Ta: A=A, x—=7(u(x)AX)")

L(X1,...,Xd)I(1,X1,...,Xd), 7T(X0,X1,...,Xd): (%,...,);—g

1
Regular continued fractions with d = 1 A(x) = (H(J (1))

T(x) :w((tx) ((1) _E:_(D) =m(x,1=[5]x) = %_HJ

)



Continued fractions and dynamical systems

Consider the Gauss map

T:[0,1] = [0,1], x — {1/x}

x1:T(x):{1/x}:)1(—[1]:1—a1

1 1
X7a1+x1 fn = |:T”1X]

X =




Continued fractions and dynamical systems

Consider the Gauss map

T:[0,1] — [0,1], x — {1/x}




Jacobi-Perron algorithm (1868-1907)

Consider the Jacobi-Perron algorithm. Its projective
version is defined on the unit square [0, 1]? by

y y 1 1 B y 1
oy (; -3 x- {;D - ({;}’{;}) |
With x = b/a, y = ¢/a, its linear version is defined on the

positive cone {(a, b,c) € R3|0 < b, ¢ < a} by

(a,b,c) — (a1, by,c1) = (b,c—|c/b]b,a— |a/b|b).
Set C = |c/b|, A= |a/b]. One has

a A 0 1 ay A 0 1 b
bl=(1 00 by |=11 00 c—Cb |
c cC 10 Ci cC 10 a— Ab



Continued fractions

(;):aoa1...an1(f1 g)..‘(?n 8)(;,,)

Jacobi—Perron

o 2 2B - (2D

1 an 9 an 1
a = Qg 0p1 Pn p;) p% Qp
54 ry rhor" B,



Theorem of Perron—Frobenius type
One considers an infinite product of matrices

E - E---

with entries in N. One assumes that there exists a matrix
B with strictly positive entries s.t. there exist
I <1 <+ <lg < jxs.t.

B:EI1 Ej1’ ’B: Eik...Ejk’_._
Then, the intersection of the cones
mk E1 e Ek(Ri)

is unidimensional [Furstenberg]

~» Convergence



Convergence for simultaneous approximations

(n) (n)

Ty da (n) (n)
Moo Mo | Pa o Piagr | (P Py
1 n (" (n)

(n) (n) 9 9

Pg1 " Pgg+i

Weak convergence Convergence in angle

(n) (n)
||m (&7...7@>:(a17...7ad)

0 () (n)
gt g
Strong convergence Convergence in distance

lim |qVa; — p{?| = 0 for all i,j

n—-+o00



Convergence of Jacobi-Perron algorithm

Theorem [Broise-Guivarc’h’99] There exists 6 > 0 s.t. for
almost every (a, )

n n

1 1
| — pn/qn| < W: 18— 1n/an| < W

where p,, qn, I, are produced by either by Jacobi-Perron
algorithm

What is the dependence of § with respect to the number
of parameters?



Lyapunov exponents
We consider a MCF algorithm given by a piecewise
constant transformation

A:[0,1] = GL(d +1,2)

with its associated transformation ([0, 1]9, Ta,v). We
assume v ergodic. Let

AN(u) = A(U)A(Tau) - A(TF ).

We assume log™ ||A(x)|| is v-integrable
(log™(a) = max{log a, 0} for a > 0).

Then by the Oseledets Theorem the following Lyapunov
exponents A\, 1 < k < d+1, exist

1
Attt A= lim —log| ACAM ()| for v-ae. u € A,
n—oo



Lyapunov exponents

an = (ot )

Theorem For a.e. x,

7T2

o1
I|mﬁlogq,,_m_1.18..._)\1

A is the

First Lyapunov exponent = “log largest eigenvalue” ~
size of the matrices/convergents A,(x) ~ gn(x) ~ eM"

Number of steps in Euclid’s algorithm = size/ log
eigenvalue

|Og N/)\1
Second Lyapunov exponent = "log of the second
eigenvalue" ~» measures the distance between column
vectors



Lyapunov exponents

First Lyapunov exponent = log largest eigenvalue~ size
of the matrices/convergents M (a) ~ g"(c) ~ eM"

Second Lyapunov exponent = "log of the second
eigenvalue" ~» measures the distance between column

vectors
() ()

A

n n

M) = | Pi P1.d-+1
() I ()

Pa.1 Pg,d-+1



Lyapunov exponents
First Lyapunov exponent = log largest eigenvalue~ size
of the matrices/convergents M (a) ~ g"(a) ~ eM"

Second Lyapunov exponent = "log of the second
eigenvalue" ~ measures the distance between column

vectors
(m .. 4"

ORI O
MD(a) = | Pii o Prds

Pat - Pl
A1 > log [ M|

M+ Az ¢ log | A2 M| 5 log |6 A ¢
Ao distance between column vectors
Dirichlet’s bound 1 +1/d vs. 1 — A2/ )\q



Lyapunov exponents
First Lyapunov exponent = log largest eigenvalue~ size
of the matrices/convergents M (a) ~ g"(a) ~ eM"

Second Lyapunov exponent = "log of the second
eigenvalue" ~ measures the distance between column
vectors

n n
MD(a) = | Pt Prdi
PE,'I;) pt(zl,,721+1
1 A M=)+ -4+ (o — N\
|ImE|og(q,17/quan) — 71+)\2 _ (A2—Ag) . (A2 — Ag+1)

since M+ -+ Agy1 =0
Hence &} + X\ = 0ifand only if Ao = --- = Agy1 = —1/d



Higher-dimensional case
Numerical experiments indicate that classical
multidimensional continued fraction algorithms seem to
cease to be strongly convergent for high dimensions. The
only exception seems to be the Arnoux-Rauzy algorithm
which, however, is defined only on a set of measure zero
[B.-Steiner-Thuswaldner]



Higher-dimensional case
Numerical experiments indicate that classical
multidimensional continued fraction algorithms seem to
cease to be strongly convergent for high dimensions. The
only exception seems to be the Arnoux-Rauzy algorithm
which, however, is defined only on a set of measure zero
[B.-Steiner-Thuswaldner]

d| e(A) [1-38 | d | a(A) |1-388
2 | —0.44841 1.3735 7 | —0.02819 | 1.0243
3| —-0.22788 | 1.1922 8 | —0.01470 1.0127
4| -0.13062 | 1.1114 9 | —0.00505 1.0044
51 -0.07880 | 1.0676 10 | +0.00217 | 0.9981
6| —0.04798 | 1.0413 11 | +0.00776 | 0.9933

Table: Heuristically estimated values for the second Lyapunov
exponent and the uniform approximation exponent of the
Jacobi—Perron Algorithm



Theorem [Duke-Rudnick-Sarnak] One has

{M e GL(n,Z),|my| < T} ~ ¢, T "

What is a random matrix in GL,(Z)?



From lattice reduction to contined fractions
In a letter to Jacobi in 1850, Hermite explained the
following idea

Consider
1 O O — QO
0 1 0 —Q2
0 0 -1 —ag
o .- .- 0 t

Let t > 0. We take the corresponding lattice A; of R+
7ei+ -+ 7Zeqg+ ZL(tegi1 — (€1 + - - - + ag€y))

A vector of the lattice is of the form
d

Z(Pi — Q)€ + qtey.i

i=1
Take a short vector in A;



How does LLL produce good approximations?

Let
1 0 0 —Oq
0 1 0 —Q
Mt — e e AN
0 O 1 —ayg

o
o
~



How does LLL produce good approximations?

Let

o We take t small
e One has det(M;) =t

. 0 —Qq

-0 — Q2

-1 —ag
0 ¢

Rem: One changes the lattice at each step
instead of changing the bases of a fixed lattice
The parameter t only occurs in the last line



How does LLL produce good approximations?
Let

1 0 - 0 —o

0 1 -+ 0 -
M; =

0 0 1 —QOq

o ... ... 0 t

LLL produces in polynomial time a vector by
such that

Hb1 H < 2d/4det(Mt)1/d+1 _ 2d/4f1/d+1
One has
by = (p1 — gar)eér + - -+ (Pd — qaed) + Gteq.1



Lattice reduction algorithms

Lattice reduction is based on the following elementary
basis transformations on the vectors of the basis
(b1 g eeey bd+1)
@ size reduction the vector b; is replaced by b; — Abj,
1<j<i
@ swaps one exchanges b; and b

These operations are decided with respect to the
Gram-Schmitdt orthogonalization of the basis b

=
bi = b — Z,ui,jbj Hij = <b:< bj*>
j=1

177

@ Size reduction |u;;| < 1/2fori>j
o Lovasz condition (5 — 2., IB; |12 < |16 1



[Lagarias’94] Let t tend to 0 and consider Minkowski
reduction. The conditions are linear in v/t but when n =7,
the number of inequalities is about 90, 000 for Minkowski
reduction.

[Bosma-Smeets’2013] Decrease the value of ¢ by diving it
by a fixed constant.

[Beukers'2014]

Proves the linearity in v/t of the conditions in LLL.

The values of t > 0 for which M; is LLL-reduced form an
interval [ty, t].

If o ¢ QY, the sequence of critical points is an infinite
sequence descending to 0.



Toward continued fractions

Onehast|0
@ How to change t?

@ How much does one have to recompute when one
changes t?

@ How to choose stopping times for t?

@ Can we get nonnegative matrices?

@ What are the rules that provide exponential
convergence?

@ Can we evaluate the growth of the size of the
matrices My --- M,?
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