# Exposants de Lyapunov, produits de matrices et fractions continues

#### V. Berthé, W. Steiner, J. Thuswaldner



#### Séminaire Flajolet

- Multidimensional continued fractions
- On the second Lyapunov exponent
- Lattice reduction and unimodular matrices

## **Continued fractions**

We consider a positive real number  $\alpha$ .

One looks for sequences of rational numbers  $(p_n/q_n)_n$  that satisfies

$$\lim p_n/q_n = \alpha$$

Continued fractions allow to do it with exponential speed

$$ert lpha - oldsymbol{p}_n / oldsymbol{q}_n ert \leq rac{1}{oldsymbol{q}_n^2}$$
 $ert ert oldsymbol{q}_n lpha ert ert ert = rac{1}{oldsymbol{q}_n}$ 

# Euclid algorithm

We start with two nonnegative integers  $u_0$  and  $u_1$ 

$$u_0 = u_1 \left[ \frac{u_0}{u_1} \right] + u_2$$
$$u_1 = u_2 \left[ \frac{u_1}{u_2} \right] + u_3$$
$$\vdots$$
$$u_{m-1} = u_m \left[ \frac{u_{m-1}}{u_m} \right] + u_{m+1}$$
$$u_{m+1} = \gcd(u_0, u_1)$$

One subtracts the smallest number from the largest as much as we can

 $u_{m+2} = 0$ 

## Euclid algorithm and continued fractions

We start with two coprime integers  $u_0$  and  $u_1$ 

 $u_0 = u_1 a_1 + u_2$ 

÷

$$u_{m-1} = u_m a_m + u_{m+1}$$
  
 $u_m = u_{m+1} a_{m+1} + 0$   
 $u_{m+1} = 1 = \gcd(u_0, u_1)$ 

## Euclid algorithm and continued fractions

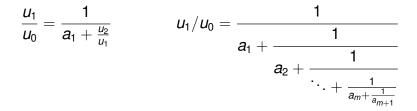
We start with two coprime integers  $u_0$  and  $u_1$ 

 $u_0 = u_1 a_1 + u_2$ 

÷

$$u_{m-1} = u_m a_m + u_{m+1}$$
  
 $u_m = u_{m+1} a_{m+1} + 0$ 

$$u_{m+1} = 1 = \gcd(u_0, u_1)$$



# Matricial description

We start with two positive real numbers  $(x_0, x_1)$  with

 $x_0 > x_1$ We divide the largest entry by the smallest and we continue

$$x_{0} = \lfloor x_{0}/x_{1} \rfloor x_{1} + x_{2} \qquad a_{1} := \lfloor x_{0}/x_{1} \rfloor$$
$$\begin{pmatrix} x_{0} \\ x_{1} \end{pmatrix} = \begin{pmatrix} a_{1} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} a_{1} & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_{n} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{n} \\ x_{n+1} \end{pmatrix}$$

# Matricial description

We start with two positive real numbers  $(x_0, x_1)$  with

 $x_0 > x_1$ We divide the largest entry by the smallest and we continue

$$x_{0} = \lfloor x_{0}/x_{1} \rfloor x_{1} + x_{2} \qquad a_{1} := \lfloor x_{0}/x_{1} \rfloor$$
$$\begin{pmatrix} x_{0} \\ x_{1} \end{pmatrix} = \begin{pmatrix} a_{1} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} a_{1} & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_{n} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{n} \\ x_{n+1} \end{pmatrix}$$

We normalize  $\alpha := x_1/x_0$  and we set

$$M_n := \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 \\ \alpha \end{pmatrix} \in \bigcap_n M_1 \cdots M_n \mathbb{R}^2_+$$

 $M_1 \cdots M_n = \begin{pmatrix} q_n & q_{n-1} \\ p_n & p_{n-1} \end{pmatrix} \rightsquigarrow$  a sequence of lattice bases for  $\mathbb{Z}^2$ 

# Multidimensional continued fractions

If we start with two parameters  $(\alpha, \beta)$ , one looks for two sequences of rational numbers  $(p_n/q_n)$  and  $(r_n/q_n)$  with the same denominator that satisfy

$$\lim p_n/q_n = \alpha \qquad \lim r_n/q_n = \beta$$

Expected speed 3/2

$$|\alpha - p_n/q_n| \le 1/q_n^{3/2}$$
  $|\beta - r_n/q_n| \le 1/q_n^{3/2}$ 

# Dirichlet's bound and exponential convergence

Dirichlet's theorem We are given a *d*-dimensional real vector  $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in [0, 1]^d$ . For any positive integer *N*, there exist integers  $\boldsymbol{p}_1, \dots, \boldsymbol{p}_d, \boldsymbol{q}$  with

$$1 \le q \le N$$

such that

$$|p_i - q\alpha_i| < \frac{1}{N^{1/d}}$$
  $i = 1, 2, \cdots, d$ 

# Dirichlet's bound and exponential convergence

Dirichlet's theorem We are given a *d*-dimensional real vector  $\boldsymbol{\alpha} = (\alpha_1, \cdots, \alpha_d) \in [0, 1]^d$ . For any positive integer *N*, there exist integers  $p_1, \ldots, p_d, q$  with

 $1 \le q \le N$ 

such that

$$|p_i - q\alpha_i| < rac{1}{N^{1/d}} \le rac{1}{q^{1/d}} \qquad i = 1, 2, \cdots, d$$

Dirichlet's bound 1 + 1/d

$$\left|\frac{p_i}{q}-\alpha_i\right|\leq rac{1}{q^{1+rac{1}{d}}} \qquad ||q\alpha||\leq rac{1}{q^{1/d}}$$

# Canonicity of continued fractions

- Euclid's algorithm Starting with two numbers, one subtracts the smallest from the largest
- Unimodularity

$$\det \left( egin{array}{cc} q_{n+1} & q_n \ p_{n+1} & p_n \end{array} 
ight) = \pm 1$$

Best approximation property

Theorem A rational number p/q is a best approximation of the real number  $\alpha$  if every p'/q' with  $1 \le q' \le q$ ,  $p/q \ne p'/q'$  satifies

$$|\boldsymbol{q}\alpha-\boldsymbol{p}|<|\boldsymbol{q}'\alpha-\boldsymbol{p}'|$$

Every best approximation of  $\alpha$  is a convergent

From  $SL(2, \mathbb{N})$  to  $SL(3, \mathbb{N})$  $SL(d, \mathbb{N})$ : matrices with entries in  $\mathbb{N}$  and determinant 1  $GL(d, \mathbb{N})$ : matrices with entries in  $\mathbb{N}$  and determinant  $\pm 1$  $SL(2, \mathbb{N})$  is a finitely generated free monoid. It is generated by

$$\left( \begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right)$$
 and  $\left( \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$ 

- $SL(2, \mathbb{N})$  is a free and finitely generated monoid
- $SL(3, \mathbb{N})$  is not free
- SL(3, ℕ) is not finitely generated. Consider the family of matrices

$$\left(\begin{array}{rrrr} 1 & 0 & n \\ 1 & n-1 & 0 \\ 1 & 1 & n-1 \end{array}\right)$$

These matrices are undecomposable for  $n \ge 3$  [Rivat]

## Multidimensional continued fractions

There is no canonical generalization of continued fractions to higher dimensions

#### Several approaches are possible

- Best simultaneous approximations
   Every q' with 1 ≤ q' < q satisfies |||q(α, β)||| < |||q'(α, β)|||
   <p>But we loose unimodularity, and the sequence of best
   approximations depends on the chosen norm [Lagarias]
- Klein polyhedra and sails [Arnold]
- Unimodular multidimensional Euclid's algorithms
  - sequences of nested cones approximating a direction Jacobi-Perron algorithm, Brun algorithm [Brentjes, Schweiger]
  - lattice reduction (LLL) [Lagarias],[Ferguson-Forcade], [Just], [Grabiner-Lagarias][Bosma-Smeets][Beukers]

## What is expected?

We are given  $(\alpha_1, \cdots, \alpha_d)$  which produces a sequence of basis of  $\mathbb{Z}^{d+1}$  and/or a sequence of approximations

Arithmetics A two-dimensional continued fraction algorithm is expected to

- detect integer relations for  $(1, \alpha_1, \cdots, \alpha_d)$
- give algebraic characterizations of periodic expansions
- converge sufficiently fast
- provide good rational approximations

Good means "with respect to Dirichlet's theorem": there exist infinitely many  $(p_i/q)_{1 \le i \le d}$  such that

$$\max_{i} |\alpha_i - p_i/q| \leq \frac{1}{q^{1+1/d}}$$

We also want ...

- to understand generic behaviour
- to be able to control the number of executions if the parameters are rational etc.
- Hausdorff dimensions for bounded digit sets etc.

We also want...

• to understand generic behaviour Continued fractions

$$\lim \frac{\log q_n}{n} = \frac{\pi^2}{12 \log 2} = 1.18...$$
 for a.e.  $\alpha$ 

$$\lim \frac{1}{n} \{k \le n; \ a_k = a\} = \frac{1}{\log 2} \log \frac{(k+1)^2}{k(k+2)}$$
 for a.e.  $\alpha$ 

- to be able to control the number of executions if the parameters are rational etc.
- Hausdorff dimensions for bounded digit sets etc.

We also want...

- to understand generic behaviour
- to be able to control the number of executions if the parameters are rational etc.

Continued fractions  $\ell(u, v)$ : number of steps in Euclid algorithm. For  $0 < v < u \le N$  and gcd(u, v) = 1

$$\mathbb{E}_{N}(\ell) \sim rac{12 \log 2}{\pi^{2}} \cdot \log N$$
 average case [Baladi-Vallée]

• Hausdorff dimensions for bounded digit sets etc.

# Multidimensional continued fractions

Aim Write 
$$\mathbf{x} \in \Delta \subseteq [0, 1]^d$$
 as  $\mathbf{x} = \lim_{n \to \infty} rac{\mathbf{p}^{(n)}}{a^{(n)}}$ 

We consider MCF algorithms given by a piecewise constant transformation

$$A: \Delta \rightarrow \operatorname{GL}(d+1,\mathbb{Z})$$

with associated transformations

$$T_{\mathcal{A}}: \Delta \to \Delta, \quad \mathbf{x} \mapsto \pi(\iota(\mathbf{x}) \mathcal{A}(\mathbf{x})^{-1})$$
$$\iota(x_1, \ldots, x_d) = (\mathbf{1}, x_1, \ldots, x_d), \quad \pi(x_0, x_1, \ldots, x_d) = (\frac{x_1}{x_0}, \ldots, \frac{x_d}{x_0})$$

# Toward the Gauss map

Let  $(x_0, x_1)$  with  $x_0 > x_1 > 0$ . We divide the largest entry by the smallest and we continue

$$x_0 = \lfloor x_0/x_1 \rfloor x_1 + x_2 \qquad a_1 := \lfloor x_0/x_1 \rfloor$$

$$\left(\begin{array}{c} x_0\\ x_1 \end{array}\right) = \left(\begin{array}{c} a_1 & 1\\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} a_1 & 1\\ 1 & 0 \end{array}\right) \cdots \left(\begin{array}{c} a_n & 1\\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x_n\\ x_{n+1} \end{array}\right)$$

## Toward the Gauss map

Let  $(x_0, x_1)$  with  $x_0 > x_1 > 0$ . We divide the largest entry by the smallest and we continue

$$x_0 = \lfloor x_0/x_1 \rfloor x_1 + x_2 \qquad a_1 := \lfloor x_0/x_1 \rfloor$$

$$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$$

Let  $\alpha := x_1/x_0$ . One has  $\alpha \in [0, 1]$ . Let  $T(\alpha) = 1/\alpha - [1/\alpha]$ .

$$\begin{pmatrix} 1 \\ \alpha \end{pmatrix} = \alpha \begin{pmatrix} [1/\alpha] & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ T(\alpha) \end{pmatrix}$$

## Toward the Gauss map

Let  $(x_0, x_1)$  with  $x_0 > x_1 > 0$ . We divide the largest entry by the smallest and we continue

$$x_0 = \lfloor x_0/x_1 \rfloor x_1 + x_2 \qquad a_1 := \lfloor x_0/x_1 \rfloor$$

$$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$$

Let  $\alpha := x_1/x_0$ . One has  $\alpha \in [0, 1]$ . Let  $T(\alpha) = 1/\alpha - [1/\alpha]$ .

$$\left(\begin{array}{c}1\\\alpha\end{array}\right) = \alpha \left(\begin{array}{cc}\left[1/\alpha\right] & 1\\1 & 0\end{array}\right) \left(\begin{array}{c}1\\T(\alpha)\end{array}\right)$$

$$\left(\begin{array}{c}1\\\alpha\end{array}\right) = \alpha \cdots T^{n-1}(\alpha) \left(\begin{array}{cc}a_1 & 1\\1 & 0\end{array}\right) \cdots \left(\begin{array}{cc}a_n & 1\\1 & 0\end{array}\right) \left(\begin{array}{c}1\\T^n(\alpha)\end{array}\right)$$

Multidimensional continued fractions We consider MCF algorithms given by a piecewise constant transformation

 $A: \Delta \rightarrow \operatorname{GL}(d+1,\mathbb{Z})$ 

with associated transformations

$$T_{\mathcal{A}}: \Delta \to \Delta, \quad \mathbf{x} \mapsto \pi(\iota(\mathbf{x}) \mathcal{A}(\mathbf{x})^{-1})$$
$$\iota(\mathbf{x}_1, \dots, \mathbf{x}_d) = (\mathbf{1}, \mathbf{x}_1, \dots, \mathbf{x}_d), \quad \pi(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_d) = \left(\frac{\mathbf{x}_1}{\mathbf{x}_0}, \dots, \frac{\mathbf{x}_d}{\mathbf{x}_0}\right)$$

Multidimensional continued fractions We consider MCF algorithms given by a piecewise constant transformation

 $A: \Delta \rightarrow \operatorname{GL}(d+1,\mathbb{Z})$ 

with associated transformations

$$T_{\mathcal{A}}: \Delta \to \Delta, \quad \mathbf{x} \mapsto \pi(\iota(\mathbf{x}) \, \mathcal{A}(\mathbf{x})^{-1})$$
$$\iota(\mathbf{x}_1, \dots, \mathbf{x}_d) = (\mathbf{1}, \mathbf{x}_1, \dots, \mathbf{x}_d), \quad \pi(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_d) = (\frac{\mathbf{x}_1}{\mathbf{x}_0}, \dots, \frac{\mathbf{x}_d}{\mathbf{x}_0})$$

Regular continued fractions with  $d = 1 A(x) = \begin{pmatrix} \lfloor \frac{1}{x} \rfloor & 1 \\ 1 & 0 \end{pmatrix}$ 

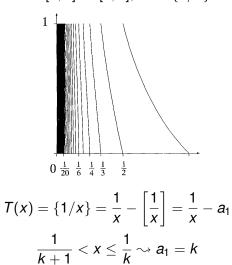
$$T(x) = \pi \left( \begin{pmatrix} 1, x \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -\lfloor \frac{1}{x} \rfloor \end{pmatrix} \right) = \pi \left( x, 1 - \lfloor \frac{1}{x} \rfloor x \right) = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor$$

## Continued fractions and dynamical systems

Consider the Gauss map

$$T: [0, 1] \to [0, 1], \ x \mapsto \{1/x\}$$
$$x_1 = T(x) = \{1/x\} = \frac{1}{x} - \left[\frac{1}{x}\right] = \frac{1}{x} - a_1$$
$$x = \frac{1}{a_1 + x_1} \qquad a_n = \left[\frac{1}{T^{n-1}x}\right]$$
$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}$$

#### Continued fractions and dynamical systems Consider the Gauss map



 $T: [0,1] \to [0,1], \ x \mapsto \{1/x\}$ 

## Jacobi-Perron algorithm (1868-1907)

Consider the Jacobi-Perron algorithm. Its projective version is defined on the unit square  $[0, 1]^2$  by

$$(x,y)\mapsto \left(\frac{y}{x}-\left\lfloor\frac{y}{x}\right\rfloor,\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor\right)=\left(\left\{\frac{y}{x}\right\},\left\{\frac{1}{x}\right\}\right).$$

With x = b/a, y = c/a, its linear version is defined on the positive cone  $\{(a, b, c) \in \mathbb{R}^3 | 0 < b, c < a\}$  by

$$(a,b,c)\mapsto (a_1,b_1,c_1)=(b,c-\lfloor c/b\rfloor b,a-\lfloor a/b\rfloor b).$$

Set  $C = \lfloor c/b \rfloor$ ,  $A = \lfloor a/b \rfloor$ . One has

$$\left(\begin{array}{c}a\\b\\c\end{array}\right) = \left(\begin{array}{cc}A&0&1\\1&0&0\\C&1&0\end{array}\right) \left(\begin{array}{c}a_1\\b_1\\c_1\end{array}\right) = \left(\begin{array}{cc}A&0&1\\1&0&0\\C&1&0\end{array}\right) \left(\begin{array}{c}b\\c-Cb\\a-Ab\end{array}\right)$$

#### **Continued fractions**

$$\alpha \mapsto \left(\frac{1}{\alpha} - \lfloor \frac{1}{\alpha} \rfloor\right)$$
$$\begin{pmatrix} 1\\ \alpha \end{pmatrix} = \alpha_0 \alpha_1 \cdots \alpha_{n-1} \begin{pmatrix} a_1 & 1\\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1\\ \alpha_n \end{pmatrix}$$
Jacobi–Perron

$$(\alpha,\beta) \mapsto \left(\frac{\beta}{\alpha} - \left\lfloor \frac{\beta}{\alpha} \right\rfloor, \frac{1}{\alpha} - \left\lfloor \frac{1}{\alpha} \right\rfloor\right) = \left(\left\{\frac{\beta}{\alpha}\right\}, \left\{\frac{1}{\alpha}\right\}\right).$$
$$\begin{pmatrix} 1\\ \alpha\\ \beta \end{pmatrix} = \alpha_0 \cdots \alpha_{n-1} \left(\begin{array}{cc} q_n & q'_n & q''_n\\ p_n & p'_n & p''_n\\ r_n & r'_n & r''_n \end{array}\right) \left(\begin{array}{c} 1\\ \alpha_n\\ \beta_n \end{array}\right)$$

## Theorem of Perron–Frobenius type

One considers an infinite product of matrices

$$E_1 \cdots E_k \cdots$$

with entries in  $\mathbb{N}$ . One assumes that there exists a matrix *B* with strictly positive entries s.t. there exist  $i_1 < j_1 < \cdots < i_k < j_k$  s.t.

$$B = E_{i_1} \cdots E_{j_1}, \cdots, B = E_{i_k} \cdots E_{j_k}, \cdots$$

Then, the intersection of the cones

$$\cap_k E_1 \cdots E_k(\mathbb{R}^n_+)$$

is unidimensional [Furstenberg]

 $\rightsquigarrow$  Convergence

Convergence for simultaneous approximations

$$M_{1}\cdots M_{n} = \begin{pmatrix} q_{1}^{(n)} & \cdots & q_{d+1}^{(n)} \\ p_{1,1}^{(n)} & \cdots & p_{1,d+1}^{(n)} \\ & \cdots & \\ p_{d,1}^{(n)} & \cdots & p_{d,d+1}^{(n)} \end{pmatrix} \rightsquigarrow \begin{pmatrix} \frac{p_{1,j}^{(n)}}{q_{j}^{(n)}}, \cdots, \frac{p_{d,j}^{(n)}}{q_{j}^{(n)}} \end{pmatrix}$$

Weak convergence Convergence in angle

$$\lim_{n \to +\infty} \left( \frac{\boldsymbol{p}_{1,j}^{(n)}}{\boldsymbol{q}_j^{(n)}}, \cdots, \frac{\boldsymbol{p}_{d,j}^{(n)}}{\boldsymbol{q}_j^{(n)}} \right) = (\alpha_1, \cdots, \alpha_d)$$

Strong convergence Convergence in distance

$$\lim_{n \to +\infty} |\boldsymbol{q}_{j}^{(n)} \alpha_{i} - \boldsymbol{p}_{i,j}^{(n)}| = 0 \text{ for all } i, j$$

# Convergence of Jacobi-Perron algorithm

Theorem [Broise-Guivarc'h'99] There exists  $\delta > 0$  s.t. for almost every  $(\alpha, \beta)$ 

$$|\alpha - p_n/q_n| < \frac{1}{q_n^{1+\delta}}, \qquad |\beta - r_n/q_n| < \frac{1}{q_n^{1+\delta}}$$

where  $p_n$ ,  $q_n$ ,  $r_n$  are produced by either by Jacobi-Perron algorithm

What is the dependence of  $\delta$  with respect to the number of parameters?

We consider a MCF algorithm given by a piecewise constant transformation

$$\textit{\textbf{A}}:~[0,1]^d \to \mathrm{GL}(\textit{\textbf{d}}+1,\mathbb{Z})$$

with its associated transformation ([0, 1]<sup>*d*</sup>,  $T_A$ ,  $\nu$ ). We assume  $\nu$  ergodic. Let

$$A^{(n)}(u) = A(u)A(T_A u) \cdots A(T_A^{n-1} u).$$

We assume  $\log^+ ||A(x)||$  is  $\nu$ -integrable  $(\log^+(a) = \max\{\log a, 0\} \text{ for } a > 0).$ 

Then by the Oseledets Theorem the following Lyapunov exponents  $\lambda_k$ ,  $1 \le k \le d+1$ , exist

$$\lambda_1 + \cdots + \lambda_k = \lim_{n \to \infty} \frac{1}{n} \log \| \wedge^k A^{(n)}(u) \|$$
 for  $\nu$ -a.e.  $u \in \Delta$ .

$$A_n(x) = \left(\begin{array}{cc} q_n & q_{n-1} \\ p_n & p_{n-1} \end{array}\right)$$

Theorem For a.e. x,

$$\lim \frac{1}{n} \log q_n = \frac{\pi^2}{12 \log 2} = 1.18 \cdots = \lambda_1$$

 $\lambda_1$  is the first Lyapunov exponent

First Lyapunov exponent = "log largest eigenvalue"  $\rightsquigarrow$  size of the matrices/convergents  $A_n(x) \sim q_n(x) \sim e^{\lambda_1 n}$ 

Number of steps in Euclid's algorithm = size/ log eigenvalue

#### $\log N/\lambda_1$

Second Lyapunov exponent = "log of the second eigenvalue" → measures the distance between column vectors

First Lyapunov exponent = log largest eigenvalue size of the matrices/convergents  $M^{(n)}(\alpha) \sim q_i^n(\alpha) \sim e^{\lambda_1 n}$ 

Second Lyapunov exponent = "log of the second eigenvalue" → measures the distance between column vectors

$$M^{(n)}(oldsymbol{lpha}) = \left(egin{array}{ccc} q_1^{(n)} & \cdots & q_{d+1}^{(n)} \ p_{1,1}^{(n)} & \cdots & p_{1,d+1}^{(n)} \ & \cdots & \ p_{d,1}^{(n)} & \cdots & p_{d,d+1}^{(n)} \end{array}
ight)$$

First Lyapunov exponent = log largest eigenvalue size of the matrices/convergents  $M^{(n)}(\alpha) \sim q_i^n(\alpha) \sim e^{\lambda_1 n}$ 

Second Lyapunov exponent = "log of the second eigenvalue" → measures the distance between column vectors

$$M^{(n)}(oldsymbol{lpha}) = \left(egin{array}{ccc} q_1^{(n)} & \cdots & q_{d+1}^{(n)} \ p_{1,1}^{(n)} & \cdots & p_{1,d+1}^{(n)} \ & \cdots & \ p_{d,1}^{(n)} & \cdots & p_{d,d+1}^{(n)} \end{array}
ight)$$

 $\begin{array}{c} \lambda_1 \leftrightarrow \log \|\boldsymbol{M}^{(n)}\| \\ \lambda_1 + \lambda_2 \leftrightarrow \log \| \wedge^2 \boldsymbol{M}^{(n)}\| \leftrightarrow \log \|\boldsymbol{c}_i^{(n)} \wedge \boldsymbol{c}_j^{(n)}\| \\ \lambda_2 \text{ distance between column vectors} \\ \text{Dirichlet's bound } 1 + 1/d \text{ vs. } 1 - \lambda_2/\lambda_1 \end{array}$ 

First Lyapunov exponent = log largest eigenvalue size of the matrices/convergents  $M^{(n)}(\alpha) \sim q_i^n(\alpha) \sim e^{\lambda_1 n}$ 

Second Lyapunov exponent = "log of the second eigenvalue"  $\rightarrow$  measures the distance between column vectors

$$M^{(n)}(oldsymbol{lpha}) = \left(egin{array}{ccc} q_1^{(n)} & \cdots & q_{d+1}^{(n)} \ p_{1,1}^{(n)} & \cdots & p_{1,d+1}^{(n)} \ & \cdots & \ p_{d,1}^{(n)} & \cdots & p_{d,d+1}^{(n)} \end{array}
ight)$$

$$\lim \frac{1}{n} \log(q_n^{1/d} ||q_n x||) = \frac{\lambda_1}{d} + \lambda_2 = \frac{(\lambda_2 - \lambda_3) + \dots + (\lambda_2 - \lambda_{d+1})}{d}$$
  
since  $\lambda_1 + \dots + \lambda_{d+1} = 0$   
Hence  $\frac{\lambda_1}{d} + \lambda_2 = 0$  if and only if  $\lambda_2 = \dots = \lambda_{d+1} = -1/d$ 

## Higher-dimensional case

Numerical experiments indicate that classical multidimensional continued fraction algorithms seem to cease to be strongly convergent for high dimensions. The only exception seems to be the Arnoux-Rauzy algorithm which, however, is defined only on a set of measure zero [B.-Steiner-Thuswaldner]

# Higher-dimensional case

Numerical experiments indicate that classical multidimensional continued fraction algorithms seem to cease to be strongly convergent for high dimensions. The only exception seems to be the Arnoux-Rauzy algorithm which, however, is defined only on a set of measure zero [B.-Steiner-Thuswaldner]

| d | $\lambda_2(A_J)$ | $\left  1 - \frac{\lambda_2(A_J)}{\lambda_1(A_J)} \right $ | d  | $\lambda_2(A_J)$ | $1 - rac{\lambda_2(A_J)}{\lambda_1(A_J)}$ |
|---|------------------|------------------------------------------------------------|----|------------------|--------------------------------------------|
| 2 | -0.44841         | 1.3735                                                     | 7  | -0.02819         | 1.0243                                     |
| 3 | -0.22788         | 1.1922                                                     | 8  | -0.01470         | 1.0127                                     |
| 4 | -0.13062         | 1.1114                                                     | 9  | -0.00505         | 1.0044                                     |
| 5 | -0.07880         | 1.0676                                                     | 10 | +0.00217         | 0.9981                                     |
| 6 | -0.04798         | 1.0413                                                     | 11 | +0.00776         | 0.9933                                     |

Table: Heuristically estimated values for the second Lyapunov exponent and the uniform approximation exponent of the Jacobi–Perron Algorithm

Theorem [Duke-Rudnick-Sarnak] One has

$$\{M \in GL(n,\mathbb{Z}), |m_{ij}| \leq T\} \sim c_n T^{n^2-n}$$

What is a random matrix in  $GL_n(\mathbb{Z})$ ?

#### From lattice reduction to contined fractions In a letter to Jacobi in 1850, Hermite explained the following idea Consider

$$\left(\begin{array}{cccccccccc}
1 & 0 & \cdots & 0 & -\alpha_1 \\
0 & 1 & \cdots & 0 & -\alpha_2 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & -\alpha_d \\
0 & \cdots & \cdots & 0 & t
\end{array}\right)$$

Let t > 0. We take the corresponding lattice  $\Lambda_t$  of  $\mathbb{R}^{d+1}$ 

$$\mathbb{Z}\boldsymbol{e}_1 + \cdots + \mathbb{Z}\boldsymbol{e}_d + \mathbb{Z}(\boldsymbol{t}\boldsymbol{e}_{d+1} - (\alpha_1\boldsymbol{e}_1 + \cdots + \alpha_d\boldsymbol{e}_d))$$

A vector of the lattice is of the form

$$\sum_{i=1}^{d} (p_i - q_t \alpha_i) e_i + qt e_{d+1}$$
  
Take a short vector in  $\Lambda_t$ 

## How does LLL produce good approximations?

Let

$$M_t := \begin{pmatrix} 1 & 0 & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \cdots & 0 & -\alpha_2 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & -\alpha_d \\ 0 & \cdots & \cdots & 0 & t \end{pmatrix}$$

## How does LLL produce good approximations?

Let

$$M_t := \begin{pmatrix} 1 & 0 & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \cdots & 0 & -\alpha_2 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & -\alpha_d \\ 0 & \cdots & \cdots & 0 & t \end{pmatrix}$$

- We take t small
- One has  $det(M_t) = t$

Rem: One changes the lattice at each step instead of changing the bases of a fixed lattice The parameter t only occurs in the last line How does LLL produce good approximations?

Let

$$M_t := \begin{pmatrix} 1 & 0 & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \cdots & 0 & -\alpha_2 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & -\alpha_d \\ 0 & \cdots & \cdots & 0 & t \end{pmatrix}$$

LLL produces in polynomial time a vector  $b_1$  such that

$$||b_1|| \le 2^{d/4} det(M_t)^{1/d+1} = 2^{d/4} t^{1/d+1}$$

One has

$$b_1 = (p_1 - q\alpha_1)e_1 + \cdots + (p_d - q\alpha_d e_d) + qte_{d+1}$$

 $\forall i, |p_i - \alpha_i q| \le 2^{d/4} t^{1/d+1}$  and  $qt \le 2^{d/4} t^{1/d+1}$ 

# Lattice reduction algorithms

Lattice reduction is based on the following elementary basis transformations on the vectors of the basis  $(b_1, ..., b_{d+1})$ 

- size reduction the vector  $b_i$  is replaced by  $b_i \lambda b_j$ ,  $1 \le j < i$
- swaps one exchanges  $b_i$  and  $b_{i+1}$

These operations are decided with respect to the Gram-Schmitdt orthogonalization of the basis *b* 

$$b_i^* = b_i - \sum_{j=1}^{i-1} \mu_{i,j} b_j^* \qquad \mu_{i,j} = \frac{\langle b_i, b_j^* \rangle}{\langle b_j^*, b_j^* \rangle}$$

- Size reduction  $|\mu_{i,j}| \le 1/2$  for i > j
- Lovász condition  $(\delta \mu_{i+1,i}^2) ||b_i^*||^2 \le ||b_{i+1}^*||^2$

[Lagarias'94] Let *t* tend to 0 and consider Minkowski reduction. The conditions are linear in  $\sqrt{t}$  but when n = 7, the number of inequalities is about 90,000 for Minkowski reduction.

[Bosma-Smeets'2013] Decrease the value of *t* by diving it by a fixed constant.

#### [Beukers'2014]

Proves the linearity in  $\sqrt{t}$  of the conditions in LLL. The values of t > 0 for which  $M_t$  is LLL-reduced form an interval  $[t_0, t_1]$ .

If  $\alpha \notin \mathbb{Q}^d$ , the sequence of critical points is an infinite sequence descending to 0.

# Toward continued fractions

One has  $t \downarrow 0$ 

- How to change *t*?
- How much does one have to recompute when one changes *t*?
- How to choose stopping times for t?
- Can we get nonnegative matrices?
- What are the rules that provide exponential convergence?
- Can we evaluate the growth of the size of the matrices  $M_1 \cdots M_n$ ?