Bruhat interval polytopes and their friends

Lauren K. Williams, Harvard

Lauren K. Williams (Harvard)
Outline of the talk

• Bruhat interval polytopes and their faces
• Combinatorics of Bruhat interval polytopes
• Some open problems
• Where did Bruhat interval polytopes come from?
• Connection to tropical geometry and (flag) matroids
• Subdivisions of the permutohedron

Based on: joint works with Yuji Kodama, Emmanuel Tsukerman, and with Jon Boretsky and Chris Eur
Outline of the talk

- Bruhat interval polytopes and their faces
- Combinatorics of Bruhat interval polytopes
- Some open problems
- Where did Bruhat interval polytopes come from?
- Connection to tropical geometry and (flag) matroids
- Subdivisions of the permutohedron

Based on: joint works with Yuji Kodama, Emmanuel Tsukerman, and with Jon Boretsky and Chris Eur
Outline of the talk

- Bruhat interval polytopes and their faces
- Combinatorics of Bruhat interval polytopes
- Some open problems
- Where did Bruhat interval polytopes come from?
- Connection to tropical geometry and (flag) matroids
- Subdivisions of the permutohedron

Based on: joint works with Yuji Kodama, Emmanuel Tsukerman, and with Jon Boretsky and Chris Eur
Outline of the talk

- Bruhat interval polytopes and their faces
- Combinatorics of Bruhat interval polytopes
- Some open problems
- Where did Bruhat interval polytopes come from?
- Connection to tropical geometry and (flag) matroids
- Subdivisions of the permutohedron

Based on: joint works with Yuji Kodama, Emmanuel Tsukerman, and with Jon Boretsky and Chris Eur
Outline of the talk

- Bruhat interval polytopes and their faces
- Combinatorics of Bruhat interval polytopes
- Some open problems
- Where did Bruhat interval polytopes come from?
- Connection to tropical geometry and (flag) matroids
- Subdivisions of the permutohedron

Based on: joint works with Yuji Kodama, Emmanuel Tsukerman, and with Jon Boretsky and Chris Eur
Outline of the talk

- Bruhat interval polytopes and their faces
- Combinatorics of Bruhat interval polytopes
- Some open problems
- Where did Bruhat interval polytopes come from?
- Connection to tropical geometry and (flag) matroids
- Subdivisions of the permutohedron

Based on: joint works with Yuji Kodama, Emmanuel Tsukerman, and with Jon Boretsky and Chris Eur
Outline of the talk

- Bruhat interval polytopes and their faces
- Combinatorics of Bruhat interval polytopes
- Some open problems
- Where did Bruhat interval polytopes come from?
- Connection to tropical geometry and (flag) matroids
- Subdivisions of the permutohedron

Based on: joint works with Yuji Kodama, Emmanuel Tsukerman, and with Jon Boretsky and Chris Eur
The weak and strong Bruhat orders on S_n

Let S_n denote the symmetric group on $[n] = \{1, 2, \ldots, n\}$, i.e. the set of all permutations $u = (u_1, \ldots, u_n)$ of $[n]$.

Let $\ell(u)$ denote the length of u, i.e. the number of inversions of u.

The **weak** Bruhat order on S_n is generated by

$$u \leq_w s_i u \text{ if } \ell(s_i u) = \ell(u) + 1, \text{ where } s_i = (i, i + 1).$$

The **strong** Bruhat order on S_n is generated by

$$u \leq_t t_{ij} u \text{ if } \ell(t_{ij} u) = \ell(u) + 1, \text{ where } t_{ij} = (i, j).$$

The weak and strong Bruhat orders on S_n

Let S_n denote the symmetric group on $[n] = \{1, 2, \ldots, n\}$, i.e. the set of all permutations $u = (u_1, \ldots, u_n)$ of $[n]$. Let $\ell(u)$ denote the length of u, i.e. the number of inversions of u.

The weak Bruhat order on S_n is generated by

$$u \preceq_w s_i u \text{ if } \ell(s_i u) = \ell(u) + 1, \text{ where } s_i = (i, i + 1).$$

The strong Bruhat order on S_n is generated by

$$u \preceq t_{ij} u \text{ if } \ell(t_{ij} u) = \ell(u) + 1, \text{ where } t_{ij} = (i, j).$$
Let S_n denote the symmetric group on $[n] = \{1, 2, \ldots, n\}$, i.e. the set of all permutations $u = (u_1, \ldots, u_n)$ of $[n]$.

Let $\ell(u)$ denote the length of u, i.e. the number of inversions of u.

The weak Bruhat order on S_n is generated by

$$u \preceq_w s_i u \text{ if } \ell(s_i u) = \ell(u) + 1, \text{ where } s_i = (i, i+1).$$

The strong Bruhat order on S_n is generated by

$$u \preceq t_{ij} u \text{ if } \ell(t_{ij} u) = \ell(u) + 1, \text{ where } t_{ij} = (i, j).$$
The weak and strong Bruhat orders on S_n

Let S_n denote the symmetric group on $[n] = \{1, 2, \ldots, n\}$, i.e. the set of all permutations $u = (u_1, \ldots, u_n)$ of $[n]$. Let $\ell(u)$ denote the length of u, i.e. the number of inversions of u.

The weak Bruhat order on S_n is generated by

$$u \leq_w s_i u \text{ if } \ell(s_i u) = \ell(u) + 1, \text{ where } s_i = (i, i + 1).$$

The strong Bruhat order on S_n is generated by

$$u \leq t_{ij} u \text{ if } \ell(t_{ij} u) = \ell(u) + 1, \text{ where } t_{ij} = (i, j).$$
Let S_n denote the symmetric group on $[n] = \{1, 2, \ldots, n\}$, i.e. the set of all permutations $u = (u_1, \ldots, u_n)$ of $[n]$.
Let $\ell(u)$ denote the length of u, i.e. the number of inversions of u.

The **weak** Bruhat order on S_n is generated by

$$u \preceq_w s_i u \text{ if } \ell(s_i u) = \ell(u) + 1, \text{ where } s_i = (i, i+1).$$

The **strong** Bruhat order on S_n is generated by

$$u \preceq t_{ij} u \text{ if } \ell(t_{ij} u) = \ell(u) + 1, \text{ where } t_{ij} = (i, j).$$
The weak and strong Bruhat orders on S_n

Let S_n denote the symmetric group on $[n] = \{1, 2, \ldots, n\}$, i.e. the set of all permutations $u = (u_1, \ldots, u_n)$ of $[n]$. Let $\ell(u)$ denote the length of u, i.e. the number of inversions of u.

The weak Bruhat order on S_n is generated by

$$u \preceq_w s_i u \text{ if } \ell(s_i u) = \ell(u) + 1, \text{ where } s_i = (i, i + 1).$$

The strong Bruhat order on S_n is generated by

$$u \preceq_t t_{ij} u \text{ if } \ell(t_{ij} u) = \ell(u) + 1, \text{ where } t_{ij} = (i, j).$$
The weak and strong Bruhat orders on S_n

Let S_n denote the symmetric group on $[n] = \{1, 2, \ldots, n\}$, i.e. the set of all permutations $u = (u_1, \ldots, u_n)$ of $[n]$. Let $\ell(u)$ denote the length of u, i.e. the number of inversions of u.

The \textbf{weak} Bruhat order on S_n is generated by

$$u \preceq_w s_i u \text{ if } \ell(s_i u) = \ell(u) + 1, \text{ where } s_i = (i, i+1).$$

The \textbf{strong} Bruhat order on S_n is generated by

$$u \preceq t_{ij} u \text{ if } \ell(t_{ij} u) = \ell(u) + 1, \text{ where } t_{ij} = (i, j).$$
Definition (Kodama - W.)

Let S_n be the symmetric group on n letters. Let $u \leq v$ in the (strong) Bruhat order on S_n. The Bruhat interval polytope $Q_{u,v}$ is

$$Q_{u,v} = \text{Conv}\{(z(1), \ldots, z(n)) \mid u \leq z \leq v\}.$$

Rk: if $u = e$ and $v = w_0 = (n, n-1, \ldots, 1)$, $Q_{u,v}$ is the permutohedron.

Prop. (K.W.): $Q_{u,v}$ is the Minkowski sum of $n-1$ matroid (positroid) polytopes. It is a generalized permutohedron (in sense of Postnikov).
Bruhat interval polytopes (BIPs)

Definition (Kodama -W.)
Let S_n be the symmetric group on n letters. Let $u \leq v$ in the (strong) Bruhat order on S_n. The Bruhat interval polytope $Q_{u,v}$ is

$$Q_{u,v} = \text{Conv}\{(z(1), \ldots, z(n)) \mid u \leq z \leq v\}.$$

Rk: if $u = e$ and $v = w_0 = (n, n-1, \ldots, 1)$, $Q_{u,v}$ is the permutohedron.

Prop. (K.W.): $Q_{u,v}$ is the Minkowski sum of $n-1$ matroid (positroid) polytopes. It is a generalized permutohedron (in sense of Postnikov).
Definition (Kodama - W.)

Let S_n be the symmetric group on n letters. Let $u \leq v$ in the (strong) Bruhat order on S_n. The Bruhat interval polytope $Q_{u,v}$ is

$$Q_{u,v} = \text{Conv}\{(z(1), \ldots, z(n)) \mid u \leq z \leq v\}.$$

Rk: if $u = e$ and $v = w_0 = (n, n-1, \ldots, 1)$, $Q_{u,v}$ is the permutohedron.

Prop. (K.W.): $Q_{u,v}$ is the Minkowski sum of $n-1$ matroid (positroid) polytopes. It is a generalized permutohedron (in sense of Postnikov).
Definition (Kodama - W.)

Let S_n be the symmetric group on n letters. Let $u \leq v$ in the (strong) Bruhat order on S_n. The **Bruhat interval polytope** $Q_{u,v}$ is

$$Q_{u,v} = \text{Conv}\{(z(1), \ldots, z(n)) \mid u \leq z \leq v\}.$$

Rk: if $u = e$ and $v = w_0 = (n, n-1, \ldots, 1)$, $Q_{u,v}$ is the permutohedron.

Prop. (K.W.): $Q_{u,v}$ is the Minkowski sum of $n - 1$ matroid (positroid) polytopes. It is a generalized permutohedron (in sense of Postnikov).
Bruhat interval polytopes (BIPs)

Definition (Kodama -W.)

Let S_n be the symmetric group on n letters. Let $u \leq v$ in the (strong) Bruhat order on S_n. The **Bruhat interval polytope** $Q_{u,v}$ is

$$Q_{u,v} = \text{Conv}\{(z(1), \ldots, z(n)) \mid u \leq z \leq v\}.$$

Rk: if $u = e$ and $v = w_0 = (n, n-1, \ldots, 1)$, $Q_{u,v}$ is the permutohedron.

Prop. (K.W.): $Q_{u,v}$ is the Minkowski sum of $n-1$ matroid (positroid) polytopes. It is a generalized permutohedron (in sense of Postnikov).
Definition (Kodama -W.)

Let S_n be the symmetric group on n letters. Let $u \leq v$ in the (strong) Bruhat order on S_n. The Bruhat interval polytope $Q_{u,v}$ is

$$Q_{u,v} = \text{Conv}\{(z(1), \ldots, z(n)) \mid u \leq z \leq v\}.$$

Rk: if $u = e$ and $v = w_0 = (n, n-1, \ldots, 1)$, $Q_{u,v}$ is the permutohedron.

Prop. (K.W.): $Q_{u,v}$ is the Minkowski sum of $n-1$ matroid (positroid) polytopes. It is a generalized permutohedron (in sense of Postnikov).
Bruhat interval polytopes (BIPs)

Definition (Kodama -W.)

Let S_n be the symmetric group on n letters. Let $u \leq v$ in the (strong) Bruhat order on S_n. The **Bruhat interval polytope** $Q_{u,v}$ is

$$Q_{u,v} = \text{Conv}\{(z(1), \ldots, z(n)) \mid u \leq z \leq v\}.$$

Rk: if $u = e$ and $v = w_0 = (n, n-1, \ldots, 1)$, $Q_{u,v}$ is the permutohedron.

Prop. (K.W.): $Q_{u,v}$ is the Minkowski sum of $n - 1$ matroid (positroid) polytopes. It is a generalized permutohedron (in sense of Postnikov).
Definition (Kodama - W.)

Let S_n be the symmetric group on n letters. Let $u \leq v$ in the (strong) Bruhat order on S_n. The **Bruhat interval polytope** $Q_{u,v}$ is

$$Q_{u,v} = \text{Conv}\{ (z(1), \ldots, z(n)) \mid u \leq z \leq v \}.$$

Rk: if $u = e$ and $v = w_0 = (n, n-1, \ldots, 1)$, $Q_{u,v}$ is the **permutohedron**.

Prop. (K.W.): $Q_{u,v}$ is the Minkowski sum of $n-1$ matroid (positroid) polytopes. It is a generalized permutohedron (in sense of Postnikov).
Bruhat interval polytopes (BIPs)

Definition (Kodama -W.)

Let S_n be the symmetric group on n letters. Let $u \leq v$ in the (strong) Bruhat order on S_n. The **Bruhat interval polytope** $Q_{u,v}$ is

$$Q_{u,v} = \text{Conv}\{(z(1), \ldots, z(n)) \mid u \leq z \leq v\}.$$

Rk: if $u = e$ and $v = w_0 = (n, n-1, \ldots, 1)$, $Q_{u,v}$ is the **permutohedron**.

Prop. (K.W.): $Q_{u,v}$ is the Minkowski sum of $n-1$ matroid (positroid) polytopes. It is a generalized permutohedron (in sense of Postnikov).
Combinatorics of Bruhat interval polytopes

Facts

- The 1-skeleton of the permutohedron is the Hasse diagram of the weak Bruhat order.
- Faces of permutohedra \cong products of smaller permutohedra.
Facts

- The 1-skeleton of the permutohedron is the Hasse diagram of the weak Bruhat order.
- Faces of permutohedra \cong products of smaller permutohedra.
Facts

- The 1-skeleton of the permutohedron is the Hasse diagram of the weak Bruhat order.
- Faces of permutohedra \(\cong\) products of smaller permutohedra.
Combinatorics of Bruhat interval polytopes

Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ is a Bruhat interval polytope $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Open problem

Can one characterize all edges of $Q_{u,v}$? Can one characterize all faces? (With Tsukerman we have a complicated criterion for determining when $Q_{x,y}$ is a face of $Q_{u,v}$; not very nice.)
Combinatorics of Bruhat interval polytopes

Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the **strong** Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ is a Bruhat interval polytope $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Open problem

Can one characterize all edges of $Q_{u,v}$? Can one characterize all faces? (With Tsukerman we have a complicated criterion for determining when $Q_{x,y}$ is a face of $Q_{u,v}$; not very nice.)
Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ is a Bruhat interval polytope $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Open problem

Can one characterize all edges of $Q_{u,v}$? Can one characterize all faces? (With Tsukerman we have a complicated criterion for determining when $Q_{x,y}$ is a face of $Q_{u,v}$; not very nice.)
Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ is a Bruhat interval polytope $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Open problem

Can one characterize all edges of $Q_{u,v}$? Can one characterize all faces? (With Tsukerman we have a complicated criterion for determining when $Q_{x,y}$ is a face of $Q_{u,v}$; not very nice.)
Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ is a Bruhat interval polytope $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Open problem

Can one characterize all edges of $Q_{u,v}$? Can one characterize all faces? (With Tsukerman we have a complicated criterion for determining when $Q_{x,y}$ is a face of $Q_{u,v}$; not very nice.)
Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ is a Bruhat interval polytope $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Open problem

Can one characterize all edges of $Q_{u,v}$? Can one characterize all faces? (With Tsukerman we have a complicated criterion for determining when $Q_{x,y}$ is a face of $Q_{u,v}$; not very nice.)
Combinatorics of Bruhat interval polytopes

Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ is a Bruhat interval polytope $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Open problem

Can one characterize all edges of $Q_{u,v}$? Can one characterize all faces? (With Tsukerman we have a complicated criterion for determining when $Q_{x,y}$ is a face of $Q_{u,v}$; not very nice.)
Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ has the form $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Theorem (Christian Gaetz)

Let e be the identity permutation. For any v, the 1-skeleton of $Q_{e,v}$ is the Hasse diagram of a lattice. (Poset is intermediate in strength between the weak and strong Bruhat order on $[e,v]$.)
Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ has the form $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Theorem (Christian Gaetz)

Let e be the identity permutation. For any v, the 1-skeleton of $Q_{e,v}$ is the Hasse diagram of a lattice. (Poset is intermediate in strength between the weak and strong Bruhat order on $[e, v]$.)
Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ has the form $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Theorem (Christian Gaetz)

Let e be the identity permutation. For any v, the 1-skeleton of $Q_{e,v}$ is the Hasse diagram of a lattice. (Poset is intermediate in strength between the weak and strong Bruhat order on $[e, v]$.)
Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ has the form $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Theorem (Christian Gaetz)

Let e be the identity permutation. For any v, the 1-skeleton of $Q_{e,v}$ is the Hasse diagram of a lattice. (Poset is intermediate in strength between the weak and strong Bruhat order on $[e, v]$.)
Combinatorics of Bruhat interval polytopes

Theorem (Kodama-W., Tsukerman-W.)

Every edge of a Bruhat interval polytope $Q_{u,v}$ comes from a cover relation in the strong Bruhat order. Moreover, each face of a Bruhat interval polytope $Q_{u,v}$ has the form $Q_{x,y}$ where $u \leq x \leq y \leq v$.

Theorem (Christian Gaetz)

Let e be the identity permutation. For any v, the 1-skeleton of $Q_{e,v}$ is the Hasse diagram of a lattice. (Poset is intermediate in strength between the weak and strong Bruhat order on $[e, v]$.)
The dimension of Bruhat interval polytopes

Def/Lemma: Let $u \leq v$ in S_n, and let $C : u = x(0) \preceq x(1) \ldots \preceq x(\ell) = v$ be any maximal chain in $[u, v]$. Label each edge of C by the transposition (ab) indicating the positions which are swapped. Then say $a \sim b$ for each edge label on C. Let $B_{u,v} = \{B^1, \ldots, B^r\}$ be the blocks of the equivalence relation on $\{1, 2, \ldots, n\}$ that \sim generates. Then $B_{u,v}$ is independent of C.

![Diagram of Bruhat interval polytopes with labels and edges indicating the transpositions and equivalence classes.]
The dimension of Bruhat interval polytopes

Def/Lemma: Let $u \leq v$ in S_n, and let $C : u = x_0 \leq x_1 \cdots \leq x_\ell = v$ be any maximal chain in $[u, v]$. Label each edge of C by the transposition (ab) indicating the positions which are swapped. Then say $a \sim b$ for each edge label on C. Let $B_{u,v} = \{B^1, \ldots, B^r\}$ be the blocks of the equivalence relation on $\{1, 2, \ldots, n\}$ that \sim generates. Then $B_{u,v}$ is independent of C.

```
Lauren K. Williams (Harvard)
Bruhat interval polytopes and their friends
2022 8 / 28
```
Def/Lemma: Let \(u \leq v \) in \(S_n \), and let \(C : u = x(0) \leq x(1) \ldots \leq x(\ell) = v \) be any maximal chain in \([u, v]\). Label each edge of \(C \) by the transposition \((ab)\) indicating the positions which are swapped. Then say \(a \sim b \) for each edge label on \(C \). Let \(B_{u,v} = \{B^1, \ldots, B^r\} \) be the blocks of the equivalence relation on \(\{1, 2, \ldots, n\} \) that \(\sim \) generates. Then \(B_{u,v} \) is independent of \(C \).
Def/Lemma: Let $u \leq v$ in S_n, and let $C : u = x_0 \leq x_1 \ldots \leq x_\ell = v$ be any maximal chain in $[u, v]$. Label each edge of C by the transposition (ab) indicating the positions which are swapped. Then say $a \sim b$ for each edge label on C. Let $B_{u,v} = \{B_1, \ldots, B_r\}$ be the blocks of the equivalence relation on $\{1, 2, \ldots, n\}$ that \sim generates. Then $B_{u,v}$ is independent of C.
Def/Lemma: Let $u \leq v$ in S_n, and let $C : u = x_{(0)} \triangleleft x_{(1)} \ldots \triangleleft x_{(\ell)} = v$ be any maximal chain in $[u, v]$. Label each edge of C by the transposition (ab) indicating the positions which are swapped. Then say $a \sim b$ for each edge label on C. Let $B_{u,v} = \{B^1, \ldots, B^r\}$ be the blocks of the equivalence relation on $\{1, 2, \ldots, n\}$ that \sim generates. Then $B_{u,v}$ is independent of C.

Lauren K. Williams (Harvard)
Bruhat interval polytopes and their friends
2022 8 / 28
Def/Lemma: Let $u \leq v$ in S_n, and let $C : u = x(0) \preceq x(1) \ldots \preceq x(\ell) = v$ be any maximal chain in $[u, v]$. Label each edge of C by the transposition (ab) indicating the positions which are swapped. Then say $a \sim b$ for each edge label on C. Let $B_{u,v} = \{B^1, \ldots, B^r\}$ be the blocks of the equivalence relation on $\{1, 2, \ldots, n\}$ that \sim generates. Then $B_{u,v}$ is independent of C.
Def/Lemma: Let $u \leq v$ in S_n, and let $C : u = x_0 \leq x_1 \cdots \leq x_\ell = v$ be any maximal chain in $[u, v]$. Label each edge of C by the transposition (ab) indicating the positions which are swapped. Then say $a \sim b$ for each edge label on C. Let $B_{u,v} = \{B^1, \ldots, B^r\}$ be the blocks of the equivalence relation on $\{1, 2, \ldots, n\}$ that \sim generates. Then $B_{u,v}$ is independent of C.

Diagram:
The dimension of Bruhat interval polytopes

Theorem (Tsukerman-W.)

The dimension $\dim Q_{u,v}$ of the Bruhat interval polytope $Q_{u,v}$ is

$$\dim Q_{u,v} = n - \#B_{u,v}.$$

The equations defining the affine span of $Q_{u,v}$ are

$$\sum_{i \in B_j^+} x_i = \sum_{i \in B_j^+} u_i (= \sum_{i \in B_j^+} v_i), \quad j = 1, 2, \ldots, \#B_{u,v}.$$
The dimension of Bruhat interval polytopes

Theorem (Tsukerman-W.)

The dimension $\dim Q_{u,v}$ of the Bruhat interval polytope $Q_{u,v}$ is

$$\dim Q_{u,v} = n - \#B_{u,v}.$$

The equations defining the affine span of $Q_{u,v}$ are

$$\sum_{i \in B^j} x_i = \sum_{i \in B^j} u_i (= \sum_{i \in B^j} v_i), \quad j = 1, 2, \ldots, \#B_{u,v}.$$
The dimension of Bruhat interval polytopes

Theorem (Tsukerman-W.)

The dimension \(\dim Q_{u,v} \) of the Bruhat interval polytope \(Q_{u,v} \) is

\[
\dim Q_{u,v} = n - \#B_{u,v}.
\]

The equations defining the affine span of \(Q_{u,v} \) are

\[
\sum_{i \in B^j} x_i = \sum_{i \in B^j} u_i (= \sum_{i \in B^j} v_i), \quad j = 1, 2, \ldots, \#B_{u,v}.
\]
Connection with matroids and their polytopes

Given a subset $S \subseteq [n]$, let $e_S := \sum_{i \in S} e_i \in \mathbb{R}^n$.

Given a collection $\mathcal{B} \subset \binom{[n]}{d}$, let $P(\mathcal{B}) = \text{Conv}\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n$.

If every edge of $P(\mathcal{B})$ is parallel to $e_i - e_j$ for some $i \neq j$, we say \mathcal{B} is the set of bases of the matroid $M = ([n], \mathcal{B})$.
Let $P(M) := P(\mathcal{B})$. Called matroid polytope.

(Gelfand-Goresky-MacPherson-Serganova)

Each full rank $r \times n$ matrix A gives rise to a matroid $M_A = ([n], \mathcal{B})$, where \{\(b_1, \ldots, b_r\)\} $\in \mathcal{B}$ iff columns b_1, \ldots, b_r of A are linearly independent.
Such a matroid is called realizable. example!

If $M = ([n], \mathcal{B})$ is a matroid and $T \subseteq [n]$, let $r_M(T) = \max_{B \in \mathcal{B}} \{|T \cap B|\}$. (Called rank of T.)
Connection with matroids and their polytopes

Given a subset $S \subseteq [n]$, let $e_S := \sum_{i \in S} e_i \in \mathbb{R}^n$.

Given a collection $\mathcal{B} \subset \binom{[n]}{d}$, let $P(\mathcal{B}) = \text{Conv}\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n$.

If every edge of $P(\mathcal{B})$ is parallel to $e_i - e_j$ for some $i \neq j$, we say \mathcal{B} is the set of bases of the matroid $M = ([n], \mathcal{B})$.

Let $P(M) := P(\mathcal{B})$. Called matroid polytope.

Each full rank $r \times n$ matrix A gives rise to a matroid $M_A = ([n], \mathcal{B})$, where $\{b_1, \ldots, b_r\} \in \mathcal{B}$ iff columns b_1, \ldots, b_r of A are linearly independent. Such a matroid is called realizable. example!

If $M = ([n], \mathcal{B})$ is a matroid and $T \subseteq [n]$, let $r_M(T) = \max_{B \in \mathcal{B}} |\{T \cap B\}|$.

(Called rank of T.)
Connection with matroids and their polytopes

Given a subset $S \subseteq [n]$, let $e_S := \sum_{i \in S} e_i \in \mathbb{R}^n$.

Given a collection $\mathcal{B} \subset \binom{[n]}{d}$, let $P(\mathcal{B}) = \text{Conv}\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n$.

If every edge of $P(\mathcal{B})$ is parallel to $e_i - e_j$ for some $i \neq j$, we say \mathcal{B} is the set of bases of the matroid $M = ([n], \mathcal{B})$.

Let $P(M) := P(\mathcal{B})$. Called matroid polytope.

Each full rank $r \times n$ matrix A gives rise to a matroid $M_A = ([n], \mathcal{B})$, where $\{b_1, \ldots, b_r\} \in \mathcal{B}$ iff columns b_1, \ldots, b_r of A are linearly independent. Such a matroid is called realizable. example!

If $M = ([n], \mathcal{B})$ is a matroid and $T \subseteq [n]$, let $r_M(T) = \max_{B \in \mathcal{B}} |\{T \cap B\}|$. (Called rank of T.)
Connection with matroids and their polytopes

Given a subset $S \subseteq [n]$, let $e_S := \sum_{i \in S} e_i \in \mathbb{R}^n$.

Given a collection $B \subset \binom{[n]}{d}$, let $P(B) = \text{Conv}\{e_B : B \in B\} \subset \mathbb{R}^n$.
If every edge of $P(B)$ is parallel to $e_i - e_j$ for some $i \neq j$, we say B is the set of bases of the matroid $M = ([n], B)$.
Let $P(M) := P(B)$. Called matroid polytope.

(Gelfand-Goresky-MacPherson-Serganova)

Each full rank $r \times n$ matrix A gives rise to a matroid $M_A = ([n], B)$, where
$\{b_1, \ldots, b_r\} \in B$ iff columns b_1, \ldots, b_r of A are linearly independent.
Such a matroid is called realizable. example!

If $M = ([n], B)$ is a matroid and $T \subseteq [n]$, let $r_M(T) = \max_{B \in B} |\{ T \cap B \}|$.
(Called rank of T.)
Connection with matroids and their polytopes

Given a subset \(S \subseteq [n] \), let \(e_S := \sum_{i \in S} e_i \in \mathbb{R}^n \).

Given a collection \(\mathcal{B} \subset \binom{[n]}{d} \), let \(P(\mathcal{B}) = \text{Conv}\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n \).

If every edge of \(P(\mathcal{B}) \) is parallel to \(e_i - e_j \) for some \(i \neq j \), we say \(\mathcal{B} \) is the set of bases of the matroid \(M = ([n], \mathcal{B}) \).

Let \(P(M) := P(\mathcal{B}) \). Called matroid polytope.

(Gelfand-Goresky-MacPherson-Serganova)

Each full rank \(r \times n \) matrix \(A \) gives rise to a matroid \(M_A = ([n], \mathcal{B}) \), where \(\{b_1, \ldots, b_r\} \in \mathcal{B} \) iff columns \(b_1, \ldots, b_r \) of \(A \) are linearly independent. Such a matroid is called realizable.

If \(M = ([n], \mathcal{B}) \) is a matroid and \(T \subseteq [n] \), let \(r_M(T) = \max_{B \in \mathcal{B}} |\{ T \cap B\}| \).

(Called rank of \(T \).)
Connection with matroids and their polytopes

Given a subset $S \subseteq [n]$, let $e_S := \sum_{i \in S} e_i \in \mathbb{R}^n$.

Given a collection $B \subset \binom{[n]}{d}$, let $P(B) = \operatorname{Conv}\{e_B : B \in B\} \subset \mathbb{R}^n$. If every edge of $P(B)$ is parallel to $e_i - e_j$ for some $i \neq j$, we say B is the set of bases of the matroid $M = ([n], B)$. Let $P(M) := P(B)$. Called matroid polytope.

(Gelfand-Goresky-MacPherson-Serganova)

Each full rank $r \times n$ matrix A gives rise to a matroid $M_A = ([n], B)$, where \(\{b_1, \ldots, b_r\} \in B \) iff columns b_1, \ldots, b_r of A are linearly independent. Such a matroid is called realizable. example!

If $M = ([n], B)$ is a matroid and $T \subseteq [n]$, let $r_M(T) = \max_{B \in B} |\{T \cap B\}|$. (Called rank of T.)
Connection with matroids and their polytopes

Given a subset $S \subseteq [n]$, let $e_S := \sum_{i \in S} e_i \in \mathbb{R}^n$.

Given a collection $\mathcal{B} \subset \binom{[n]}{d}$, let $P(\mathcal{B}) = \text{Conv}\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n$.

If every edge of $P(\mathcal{B})$ is parallel to $e_i - e_j$ for some $i \neq j$, we say \mathcal{B} is the set of bases of the matroid $M = ([n], \mathcal{B})$.

Let $P(M) := P(\mathcal{B})$. Called matroid polytope.

(Gelfand-Goresky-MacPherson-Serganova)

Each full rank $r \times n$ matrix A gives rise to a matroid $M_A = ([n], \mathcal{B})$, where $\{b_1, \ldots, b_r\} \in \mathcal{B}$ iff columns b_1, \ldots, b_r of A are linearly independent.

Such a matroid is called realizable. example!

If $M = ([n], \mathcal{B})$ is a matroid and $T \subseteq [n]$, let $r_M(T) = \max_{B \in \mathcal{B}} |\{T \cap B\}|$.

(Called rank of T.)
Connection with matroids and their polytopes

Given a subset \(S \subseteq [n] \), let \(e_S := \sum_{i \in S} e_i \in \mathbb{R}^n \).

Given a collection \(B \subset \binom{[n]}{d} \), let \(P(B) = \text{Conv}\{e_B : B \in B\} \subset \mathbb{R}^n \).
If every edge of \(P(B) \) is parallel to \(e_i - e_j \) for some \(i \neq j \), we say \(B \) is the set of bases of the matroid \(M = ([n], B) \).
Let \(P(M) := P(B) \). Called matroid polytope.

(Gelfand-Goresky-MacPherson-Serganova)

Each full rank \(r \times n \) matrix \(A \) gives rise to a matroid \(M_A = ([n], B) \), where \(\{b_1, \ldots, b_r\} \in B \) iff columns \(b_1, \ldots, b_r \) of \(A \) are linearly independent.
Such a matroid is called realizable. example!

If \(M = ([n], B) \) is a matroid and \(T \subseteq [n] \), let \(r_M(T) = \max_{B \in B} |\{ T \cap B \}| \).
(Called rank of \(T \).)
Connection with matroids and their polytopes

Given a subset $S \subseteq [n]$, let $e_S := \sum_{i \in S} e_i \in \mathbb{R}^n$.

Given a collection $\mathcal{B} \subset \binom{[n]}{d}$, let $P(\mathcal{B}) = \text{Conv}\{e_B : B \in \mathcal{B}\} \subset \mathbb{R}^n$.

If every edge of $P(\mathcal{B})$ is parallel to $e_i - e_j$ for some $i \neq j$, we say \mathcal{B} is the set of bases of the matroid $M = ([n], \mathcal{B})$.

Let $P(M) := P(\mathcal{B})$. Called matroid polytope.

(Gelfand-Goresky-MacPherson-Serganova)

Each full rank $r \times n$ matrix A gives rise to a matroid $M_A = ([n], \mathcal{B})$, where $\{b_1, \ldots, b_r\} \in \mathcal{B}$ iff columns b_1, \ldots, b_r of A are linearly independent. Such a matroid is called realizable. example!

If $M = ([n], \mathcal{B})$ is a matroid and $T \subseteq [n]$, let $r_M(T) = \max_{B \in \mathcal{B}} |\{T \cap B\}|$. (Called rank of T.)
Connection with matroids and their polytopes

Proposition (Tsukerman-W.)

Choose \(u \leq v \in S_n \), and for each \(1 \leq k \leq n \), define \(B^k \) to be

\[
\{ I \in \binom{[n]}{k} \mid \exists z \in [u, v] \text{ s.t. } I = \{ z^{-1}(n), z^{-1}(n-1), \ldots, z^{-1}(n-k+1) \} \}.
\]

Then \(M^k := ([n], B^k) \) is a matroid and \(Q_{u,v} \) is the Minkowski sum of matroid polytopes \(P(M^1) + \cdots + P(M^n) \).

Corollary: Inequality description of \(Q_{u,v} \)

\[
Q_{u,v} = \left\{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = \binom{n+1}{2}, \sum_{i \in A} x_i \leq \sum_{j=1}^{n-1} r_{M_j}(A) \forall A \subseteq [n] \right\}
\]

Question: Is there a shorter description? Characterization of facets?
Connection with matroids and their polytopes

Proposition (Tsukerman-W.)

Choose $u \leq v \in S_n$, and for each $1 \leq k \leq n$, define B^k to be

$$\{ I \in \binom{[n]}{k} \mid \exists z \in [u,v] \text{ s.t. } I = \{ z^{-1}(n), z^{-1}(n-1), \ldots, z^{-1}(n-k+1) \} \}.$$

Then $M^k := ([n], B^k)$ is a matroid and $Q_{u,v}$ is the Minkowski sum of matroid polytopes $P(M^1) + \cdots + P(M^n)$.

Corollary: Inequality description of $Q_{u,v}$

$$Q_{u,v} = \left\{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = \binom{n+1}{2}, \sum_{i \in A} x_i \leq \sum_{j=1}^{n-1} r_{M_j}(A) \forall A \subset [n] \right\}$$

Question: Is there a shorter description? Characterization of facets?
Connection with matroids and their polytopes

Proposition (Tsukerman-W.)

Choose $u \leq v \in S_n$, and for each $1 \leq k \leq n$, define B^k to be

$$\{ I \in \binom{[n]}{k} \mid \exists z \in [u, v] \text{ s.t. } I = \{ z^{-1}(n), z^{-1}(n-1), \ldots, z^{-1}(n-k+1) \}. \}.$$

Then $M^k := ([n], B^k)$ is a matroid and $Q_{u,v}$ is the Minkowski sum of matroid polytopes $P(M^1) + \cdots + P(M^n)$.

Corollary: Inequality description of $Q_{u,v}$

$$Q_{u,v} = \left\{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = \binom{n+1}{2}, \sum_{i \in A} x_i \leq \sum_{j=1}^{n-1} r_{M^j}(A) \forall A \subset [n] \right\}.$$

Question: Is there a shorter description? Characterization of facets?
Proposition (Tsukerman-W.)

Choose \(u \leq v \in S_n \), and for each \(1 \leq k \leq n \), define \(B^k \) to be

\[
\{ I \in \binom{[n]}{k} | \exists z \in [u, v] \text{ s.t. } I = \{ z^{-1}(n), z^{-1}(n-1), \ldots, z^{-1}(n-k+1) \} \}.
\]

Then \(M^k := ([n], B^k) \) is a matroid and \(Q_{u,v} \) is the Minkowski sum of matroid polytopes \(P(M^1) + \cdots + P(M^n) \).

Corollary: Inequality description of \(Q_{u,v} \)

\[
Q_{u,v} = \left\{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = \binom{n+1}{2}, \sum_{i \in A} x_i \leq \sum_{j=1}^{n-1} r_{M^j}(A) \forall A \subset [n] \right\}
\]

Question: Is there a shorter description? Characterization of facets?
Choose $u \leq v \in S_n$, and for each $1 \leq k \leq n$, define B^k to be

$$\{ I \in \binom{[n]}{k} \mid \exists z \in [u, v] \text{ s.t. } I = \{ z^{-1}(n), z^{-1}(n-1), \ldots, z^{-1}(n-k+1) \} \}. $$

Then $M^k := ([n], B^k)$ is a matroid and $Q_{u,v}$ is the Minkowski sum of matroid polytopes $P(M^1) + \cdots + P(M^n)$.

Corollary: Inequality description of $Q_{u,v}$

$$Q_{u,v} = \left\{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = \binom{n+1}{2}, \sum_{i \in A} x_i \leq \sum_{j=1}^{n-1} r_{M_j}(A) \forall A \subset [n] \right\}$$

Question: Is there a shorter description? Characterization of facets?
Connection with matroids and their polytopes

Proposition (Tsukerman-W.)

Choose \(u \leq v \in S_n \), and for each \(1 \leq k \leq n \), define \(\mathcal{B}^k \) to be

\[
\{ I \in \binom{[n]}{k} \mid \exists z \in [u, v] \text{ s.t. } I = \{ z^{-1}(n), z^{-1}(n-1), \ldots, z^{-1}(n-k+1) \}. \}
\]

Then \(M^k := ([n], \mathcal{B}^k) \) is a matroid and \(Q_{u,v} \) is the Minkowski sum of matroid polytopes \(P(M^1) + \cdots + P(M^n) \).

Corollary: Inequality description of \(Q_{u,v} \)

\[
Q_{u,v} = \left\{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = \binom{n+1}{2}, \sum_{i \in A} x_i \leq \sum_{j=1}^{n-1} r_{M^j}(A) \forall A \subset [n] \right\}
\]

Question: Is there a shorter description? Characterization of facets?
Connection with matroids and their polytopes

Proposition (Tsukerman-W.)

Choose \(u \leq v \in S_n \), and for each \(1 \leq k \leq n \), define \(B^k \) to be

\[
\{ I \in \binom{[n]}{k} \mid \exists z \in [u, v] \text{ s.t. } I = \{ z^{-1}(n), z^{-1}(n-1), \ldots, z^{-1}(n-k+1) \} \}.
\]

Then \(M^k := ([n], B^k) \) is a matroid and \(Q_{u,v} \) is the Minkowski sum of matroid polytopes \(P(M^1) + \cdots + P(M^n) \).

Corollary: Inequality description of \(Q_{u,v} \)

\[
Q_{u,v} = \left\{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = \binom{n+1}{2}, \sum_{i \in A} x_i \leq \sum_{j=1}^{n-1} r_{M_j}(A) \forall A \subset [n] \right\}
\]

Question: Is there a shorter description?

Characterization of facets?
Connection with matroids and their polytopes

Proposition (Tsukerman-W.)

Choose \(u \leq v \in S_n \), and for each \(1 \leq k \leq n \), define \(\mathcal{B}^k \) to be

\[
\{ I \in \binom{[n]}{k} | \exists z \in [u,v] \text{ s.t. } I = \{ z^{-1}(n), z^{-1}(n-1), \ldots, z^{-1}(n-k+1) \} \}.
\]

Then \(M^k := ([n], \mathcal{B}^k) \) is a matroid and \(Q_{u,v} \) is the Minkowski sum of matroid polytopes \(P(M^1) + \cdots + P(M^n) \).

Corollary: Inequality description of \(Q_{u,v} \)

\[
Q_{u,v} = \left\{ x \in \mathbb{R}^n | \sum_{i \in [n]} x_i = \binom{n+1}{2}, \sum_{i \in A} x_i \leq \sum_{j=1}^{n-1} r_{M_j}(A) \forall A \subset [n] \right\}
\]

Question: Is there a shorter description? Characterization of facets?
Where did Bruhat interval polytopes come from?

- Arose in our study of full Kostant-Toda lattice (Kodama-W.)

- Each Bruhat interval polytope is the moment map image of a Richardson variety \(R_{u,v} \) in the complete flag variety \(Fl_n \) (K-W.).

- Kazhdan-Lusztig’s \(R \)-polynomials \(R_{u,v}(q) \) have geom. interpretation:
 \[R_{u,v}(q) = \# R_{u,v}(\mathbb{F}_q), \]
 the \# of \(\mathbb{F}_q \)-points in the Richardson variety. Studying BIPs \(\leadsto \) new recurrence for \(R \)-polynomials. (T-W.)

The interpretation of BIPs as moment map images of Richardson varieties (subvarieties of the complete flag variety \(Fl_n \)) leads to a natural generalization of BIPs ...
Where did Bruhat interval polytopes come from?

- Arose in our study of full Kostant-Toda lattice (Kodama-W.)

- Each Bruhat interval polytope is the moment map image of a Richardson variety $\mathcal{R}_{u,v}$ in the complete flag variety Fl_n (K-W.).

- Kazhdan-Lusztig’s R-polynomials $R_{u,v}(q)$ have geom. interpretation:

 $$R_{u,v}(q) = \#\mathcal{R}_{u,v}(\mathbb{F}_q),$$

 the # of \mathbb{F}_q-points in the Richardson variety.

 Studying BIPs \Rightarrow new recurrence for R-polynomials. (T-W.)

The interpretation of BIPs as moment map images of Richardson varieties (subvarieties of the complete flag variety Fl_n) leads to a natural generalization of BIPs ...
Where did Bruhat interval polytopes come from?

- Arose in our study of full Kostant-Toda lattice (Kodama-W.)

- Each Bruhat interval polytope is the moment map image of a Richardson variety $R_{u,v}$ in the complete flag variety Fl_n (K-W.).

- Kazhdan-Lusztig’s R-polynomials $R_{u,v}(q)$ have geom. interpretation: $R_{u,v}(q) = \# R_{u,v}(\mathbb{F}_q)$, the # of \mathbb{F}_q-points in the Richardson variety. Studying BIPs \leadsto new recurrence for R-polynomials. (T-W.)

The interpretation of BIPs as moment map images of Richardson varieties (subvarieties of the complete flag variety Fl_n) leads to a natural generalization of BIPs ...
Where did Bruhat interval polytopes come from?

- Arose in our study of full Kostant-Toda lattice (Kodama-W.)

- Each Bruhat interval polytope is the moment map image of a Richardson variety $\mathcal{R}_{u,v}$ in the complete flag variety Fl_n (K-W.).

- Kazhdan-Lusztig’s R-polynomials $R_{u,v}(q)$ have geom. interpretation: $R_{u,v}(q) = \# \mathcal{R}_{u,v}(\mathbb{F}_q)$, the # of \mathbb{F}_q-points in the Richardson variety. Studying BIPs \Rightarrow new recurrence for R-polynomials. (T-W.)

The interpretation of BIPs as moment map images of Richardson varieties (subvarieties of the complete flag variety Fl_n) leads to a natural generalization of BIPs ...
Where did Bruhat interval polytopes come from?

- Arose in our study of full Kostant-Toda lattice (Kodama-W.)

- Each Bruhat interval polytope is the moment map image of a Richardson variety $\mathcal{R}_{u,v}$ in the complete flag variety Fl_n (K-W.).

- Kazhdan-Lusztig’s R-polynomials $R_{u,v}(q)$ have geometric interpretation: $R_{u,v}(q) = \#\mathcal{R}_{u,v}(\mathbb{F}_q)$, the number of \mathbb{F}_q-points in the Richardson variety. Studying BIPs \leadsto new recurrence for R-polynomials. (T-W.)

The interpretation of BIPs as moment map images of Richardson varieties (subvarieties of the complete flag variety Fl_n) leads to a natural generalization of BIPs ...
Where did Bruhat interval polytopes come from?

- Arose in our study of full Kostant-Toda lattice (Kodama-W.)

- Each Bruhat interval polytope is the moment map image of a Richardson variety $R_{u,v}$ in the complete flag variety Fl_n (K-W.).

- Kazhdan-Lusztig’s R-polynomials $R_{u,v}(q)$ have geometric interpretation: $R_{u,v}(q) = \#R_{u,v}(\mathbb{F}_q)$, the number of \mathbb{F}_q-points in the Richardson variety. Studying BIPs \leadsto new recurrence for R-polynomials. (T-W.)

The interpretation of BIPs as moment map images of Richardson varieties (subvarieties of the complete flag variety Fl_n) leads to a natural generalization of BIPs...
Where did Bruhat interval polytopes come from?

- Arose in our study of full Kostant-Toda lattice (Kodama-W.)

- Each Bruhat interval polytope is the moment map image of a Richardson variety $R_{u,v}$ in the complete flag variety Fl_n (K-W.).

- Kazhdan-Lusztig’s R-polynomials $R_{u,v}(q)$ have geometric interpretation: $R_{u,v}(q) = \# R_{u,v}(\mathbb{F}_q)$, the number of \mathbb{F}_q-points in the Richardson variety. Studying BIPs \rightsquigarrow new recurrence for R-polynomials. (T-W.)

The interpretation of BIPs as moment map images of Richardson varieties (subvarieties of the complete flag variety Fl_n) leads to a natural generalization of BIPs ...
Let G be a semisimple simply connected algebraic group with torus T and Weyl group W.

Let $P = P_J$, a parabolic subgroup of G. Let W_J be corresponding parabolic subgroup of W.

ρ_J – sum of fund. weights corresp. to J, so that $G/P \hookrightarrow \mathbb{P}(V_{\rho_J})$.

Definition (Tsukerman-W.)

Choose $u \leq v$ in W, where v is a min-length coset rep in W/W_J. The (generalized) Bruhat interval polytope for G/P is

$$\tilde{Q}^J_{u,v} := \text{Conv}\{z \cdot \rho_J \mid u \leq z \leq v\} \subset t^*_R.$$

When $G = \text{SL}_n(\mathbb{R})$ w/ fund. weights $e_1, e_1 + e_2, \ldots, e_1 + \cdots + e_{n-1}$, and $J = \emptyset$, we have:

$$Q_{u,v} = \tilde{Q}^\emptyset_{w_0v^{-1},w_0u^{-1}},$$

where w_0 is the longest permutation.
(Generalized) Bruhat interval polytopes for G/P

- Let G be a semisimple simply connected algebraic group with torus T and Weyl group W.
- Let $P = P_J$, a parabolic subgroup of G. Let W_J be corresponding parabolic subgroup of W.
- ρ_J – sum of fund. weights corresp. to J, so that $G/P \hookrightarrow \mathbb{P}(V_{\rho_J})$.

Definition (Tsukerman-W.)

Choose $u \leq v$ in W, where v is a min-length coset rep in W/W_J. The (generalized) Bruhat interval polytope for G/P is

$$\tilde{Q}_{u,v} := \text{Conv}\{z \cdot \rho_J \mid u \leq z \leq v\} \subset t^*_R.$$

When $G = SL_n(\mathbb{R})$ w/ fund. weights $e_1, e_1 + e_2, \ldots, e_1 + \cdots + e_{n-1}$, and $J = \emptyset$, we have:

$$Q_{u,v} = \tilde{Q}_{w_0v^{-1},w_0u^{-1}},$$

where w_0 is the longest permutation.
Let G be a semisimple simply connected algebraic group with torus T and Weyl group W.

Let $P = P_J$, a parabolic subgroup of G. Let W_J be corresponding parabolic subgroup of W.

ρ_J – sum of fund. weights corresp. to J, so that $G/P \hookrightarrow \mathbb{P}(V_{\rho_J})$.

Definition (Tsukerman-W.)

Choose $u \leq v$ in W, where v is a min-length coset rep in W/W_J. The (generalized) Bruhat interval polytope for G/P is

$$\tilde{Q}_{u,v} := \text{Conv}\{z \cdot \rho_J \mid u \leq z \leq v\} \subset t^*_R.$$

When $G = \text{SL}_n(\mathbb{R})$ w/ fund. weights $e_1, e_1 + e_2, \ldots, e_1 + \cdots + e_{n-1}$, and $J = \emptyset$, we have:

$$Q_{u,v} = \tilde{Q}_{\emptyset}^{w_0v^{-1},w_0u^{-1}},$$

where w_0 is the longest permutation.
(Generalized) Bruhat interval polytopes for G/P

- Let G be a semisimple simply connected algebraic group with torus T and Weyl group W.
- Let $P = P_J$, a parabolic subgroup of G. Let W_J be corresponding parabolic subgroup of W.
- ρ_J – sum of fund. weights corresp. to J, so that $G/P \hookrightarrow \mathbb{P}(V_{\rho_J})$.

Definition (Tsukerman-W.)

Choose $u \leq v$ in W, where v is a min-length coset rep in W/W_J. The (generalized) Bruhat interval polytope for G/P is

$$\tilde{Q}_{u,v}^J := \text{Conv}\{z \cdot \rho_J \mid u \leq z \leq v\} \subset t^*_\mathbb{R}.$$

When $G = \text{SL}_n(\mathbb{R})$ w/ fund. weights $e_1, e_1 + e_2, \ldots, e_1 + \cdots + e_{n-1}$, and $J = \emptyset$, we have:

$$Q_{u,v} = \tilde{Q}_{w_0v^{-1},w_0u^{-1}}^\emptyset,$$

where w_0 is the longest permutation.
(Generalized) Bruhat interval polytopes for G/P

- Let G be a semisimple simply connected algebraic group with torus T and Weyl group W.
- Let $P = P_J$, a parabolic subgroup of G. Let W_J be corresponding parabolic subgroup of W.
- ρ_J – sum of fund. weights corresp. to J, so that $G/P \hookrightarrow \mathbb{P}(V_{\rho_J})$.

Definition (Tsukerman-W.)

Choose $u \leq v$ in W, where v is a min-length coset rep in W/W_J. The (generalized) Bruhat interval polytope for G/P is

$$\tilde{Q}_{u,v}^J := \text{Conv}\{z \cdot \rho_J \mid u \leq z \leq v\} \subset t^*_\mathbb{R}.$$

When $G = \text{SL}_n(\mathbb{R})$ w/ fund. weights $e_1, e_1 + e_2, \ldots, e_1 + \cdots + e_{n-1}$, and $J = \emptyset$, we have:

$$Q_{u,v} = \tilde{Q}_{w_0v^{-1},w_0u^{-1},}^\emptyset,$$

where w_0 is the longest permutation.
Let G be a semisimple simply connected algebraic group with torus T and Weyl group W.

Let $P = P_J$, a parabolic subgroup of G. Let W_J be corresponding parabolic subgroup of W.

ρ_J – sum of fund. weights corresp. to J, so that $G/P \hookrightarrow \mathbb{P}(V_{\rho_J})$.

Definition (Tsukerman-W.)

Choose $u \leq v$ in W, where v is a min-length coset rep in W/W_J. The \textit{(generalized) Bruhat interval polytope} for G/P is

$$\tilde{Q}_{u,v}^J := \text{Conv}\{z \cdot \rho_J \mid u \leq z \leq v\} \subset t_R^*.$$

When $G = \text{SL}_n(\mathbb{R})$ w/ fund. weights $e_1, e_1 + e_2, \ldots, e_1 + \cdots + e_{n-1}$, and $J = \emptyset$, we have:

$$Q_{u,v} = \tilde{Q}_{v-1,w_0 u-1}^\emptyset,$$

where w_0 is the longest permutation.
Let G be a semisimple simply connected algebraic group with torus T and Weyl group W.

Let $P = P_J$, a parabolic subgroup of G. Let W_J be corresponding parabolic subgroup of W.

ρ_J – sum of fundamental weights corresponding to J, so that $G/P \hookrightarrow \mathbb{P}(V_{\rho_J})$.

Definition (Tsukerman-W.)

Choose $u \leq v$ in W, where v is a min-length coset rep in W/W_J. The (generalized) Bruhat interval polytope for G/P is

$$\tilde{Q}^J_{u,v} := \text{Conv}\{z \cdot \rho_J | u \leq z \leq v\} \subset t^*_\mathbb{R}.$$

When $G = \text{SL}_n(\mathbb{R})$ with fundamental weights $e_1, e_1 + e_2, \ldots, e_1 + \cdots + e_{n-1}$, and $J = \emptyset$, we have:

$$Q_{u,v} = \tilde{Q}^\emptyset_{w_0v^{-1},w_0u^{-1}},$$

where w_0 is the longest permutation.
(Generalized) Bruhat interval polytopes for G/P include:

- Bruhat interval polytopes
- *positroid* polytopes

Theorem (T.W.)

The face of a (generalized) Bruhat interval polytopes for G/P is again a (generalized) Bruhat interval polytope for G/P.
(Generalized) Bruhat interval polytopes for G/P include:

- Bruhat interval polytopes
- \textit{positroid} polytopes

Theorem (T.W.)
The face of a (generalized) Bruhat interval polytopes for G/P is again a (generalized) Bruhat interval polytope for G/P.

Lauren K. Williams (Harvard)
Bruhat interval polytopes and their friends
2022 14 / 28
(Generalized) Bruhat interval polytopes for G/P include:

- Bruhat interval polytopes
- positroid polytopes

Theorem (T.W.)

The face of a (generalized) Bruhat interval polytopes for G/P is again a (generalized) Bruhat interval polytope for G/P.

Lauren K. Williams (Harvard)
Bruhat interval polytopes and their friends
2022 14 / 28
(Generalized) Bruhat interval polytopes for G/P include:

- Bruhat interval polytopes
- positroid polytopes

Theorem (T.W.)

The face of a (generalized) Bruhat interval polytopes for G/P is again a (generalized) Bruhat interval polytope for G/P.
Connection to tropical geometry and matroids

- **Tropical geometry** is a version of algebraic geometry where we replace polynomials (defined using \times, $+$) with tropical polynomials (defined using $+$, \min).

- Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).

- Baker-Bowler have a framework of matroids over hyperfields. In this framework,
 - Grassmannian over the *tropical hyperfield* $\rightsquigarrow \text{trop Grassmannian}^1$
 - Grassmannian over the *Krasner hyperfield* \rightsquigarrow the set of matroids.

- Jarra-Lorscheid generalized framework to flag variety/ flag matroids.

Next: link our story more closely to tropical geometry and flag variety. But first: an aside on decompositions of the permutohedron ...

1. actually the Dressian, which contains the trop Grassmannian...
Connection to tropical geometry and matroids

- *Tropical geometry* is a version of algebraic geometry where we replace polynomials (defined using \times, $+$) with tropical polynomials (defined using $+$, \min).

- Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).

- Baker-Bowler have a framework of matroids over hyperfields. In this framework,
 - Grassmannian over the *tropical hyperfield* \mapsto *trop Grassmannian*\(^1\)
 - Grassmannian over the *Krasner hyperfield* \mapsto the set of matroids.

- Jarra-Lorscheid generalized framework to flag variety/flag matroids.

Next: link our story more closely to tropical geometry and flag variety. But first: an aside on decompositions of the permutohedron ...

\(^1\) actually the Dressian, which contains the trop Grassmannian.
Tropical geometry is a version of algebraic geometry where we replace polynomials (defined using \times, $+$) with tropical polynomials (defined using $+$, \min).

Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).

Baker-Bowler have a framework of matroids over hyperfields. In this framework,
- Grassmannian over the tropical hyperfield \mapsto trop Grassmannian\(^1\)
- Grassmannian over the Krasner hyperfield \mapsto the set of matroids.
- Jarra-Lorscheid generalized framework to flag variety/ flag matroids.

Next: link our story more closely to tropical geometry and flag variety. But first: an aside on decompositions of the permutohedron ...

\(^1\)actually the Dressian, which contains the trop Grassmannian.
Connection to tropical geometry and matroids

- *Tropical geometry* is a version of algebraic geometry where we replace polynomials (defined using $\times, +$) with tropical polynomials (defined using $+, \min$).

- Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).

- Baker-Bowler have a framework of matroids over hyperfields. In this framework,
 - Grassmannian over the *tropical hyperfield* \mapsto trop Grassmannian\(^1\)
 - Grassmannian over the *Krasner hyperfield* \mapsto the set of matroids.

- Jarrar-Lorscheid generalized framework to flag variety/flag matroids.

Next: link our story more closely to tropical geometry and flag variety. But first: an aside on decompositions of the permutohedron ...

\(^1\) actually the Dressian, which contains the trop Grassmannian.
Tropical geometry is a version of algebraic geometry where we replace polynomials (defined using $\times,+$) with tropical polynomials (defined using $+,\min$).

Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).

Baker-Bowler have a framework of **matroids over hyperfields**.

In this framework,
- Grassmannian over the *tropical hyperfield* \mapsto *trop Grassmannian*\(^1\)
- Grassmannian over the *Krasner hyperfield* \mapsto the set of matroids.
- Jarra-Lorscheid generalized framework to flag variety/flag matroids.

Next: link our story more closely to tropical geometry and flag variety. But first: an aside on decompositions of the permutohedron ...
Tropical geometry is a version of algebraic geometry where we replace polynomials (defined using $\times, +$) with tropical polynomials (defined using $+, \text{min}$).

Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).

Baker-Bowler have a framework of matroids over hyperfields. In this framework,

- Grassmannian over the *tropical hyperfield* \mapsto *trop Grassmannian*\(^1\)
- Grassmannian over the *Krasner hyperfield* \mapsto the set of matroids.

Jarra-Lorscheid generalized framework to flag variety/flag matroids.

Next: link our story more closely to tropical geometry and flag variety. But first: an aside on decompositions of the permutohedron ...

\(^1\)actually the Dressian, which contains the trop Grassmannian
Connection to tropical geometry and matroids

- Tropical geometry is a version of algebraic geometry where we replace polynomials (defined using $\times, +$) with tropical polynomials (defined using $+, \min$).
- Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).
- Baker-Bowler have a framework of matroids over hyperfields. In this framework,
 * Grassmannian over the tropical hyperfield \mapsto trop Grassmannian1
 * Grassmannian over the Krasner hyperfield \mapsto the set of matroids.
- Jarra-Lorscheid generalized framework to flag variety/flag matroids.

Next: link our story more closely to tropical geometry and flag variety. But first: an aside on decompositions of the permutohedron ...

1 actually the Dressian, which contains the trop Grassmannian
Connection to tropical geometry and matroids

- *Tropical geometry* is a version of algebraic geometry where we replace polynomials (defined using $\times, +$) with tropical polynomials (defined using $+, \text{min}$).

- Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).

- Baker-Bowler have a framework of matroids over hyperfields. In this framework,
 - Grassmannian over the *tropical hyperfield* \leadsto *trop Grassmannian*\(^1\)
 - Grassmannian over the *Krasner hyperfield* \leadsto the set of matroids.
 - Jarra-Lorscheid generalized framework to flag variety/flag matroids.

Next: link our story more closely to tropical geometry and flag variety.
But first: an aside on decompositions of the permutohedron ...

\(^1\) actually the Dressian, which contains the trop Grassmannian
Connection to tropical geometry and matroids

- *Tropical geometry* is a version of algebraic geometry where we replace polynomials (defined using $\times, +$) with tropical polynomials (defined using $+, \min$).

- Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).

- Baker-Bowler have a framework of matroids over hyperfields. In this framework,
 - Grassmannian over the *tropical hyperfield* \mapsto *trop Grassmannian*\(^1\)
 - Grassmannian over the *Krasner hyperfield* \mapsto the set of matroids.

- Jarra-Lorscheid generalized framework to flag variety/ flag matroids.

Next: link our story more closely to tropical geometry and flag variety.

But first: an aside on decompositions of the permutohedron ...

\(^1\) actually the Dressian, which contains the trop Grassmannian
Connection to tropical geometry and matroids

- *Tropical geometry* is a version of algebraic geometry where we replace polynomials (defined using $\times,+$) with tropical polynomials (defined using $+,\min$).

- Various connections between tropical geometry and matroids have been discovered starting around 2008 (Speyer, Herrmann, Jensen, Joswig, Sturmfels ...).

- Baker-Bowler have a framework of matroids over hyperfields. In this framework,
 - Grassmannian over the *tropical hyperfield* $\mapsto \text{trop Grassmannian}^1$
 - Grassmannian over the *Krasner hyperfield* \mapsto the set of matroids.

- Jarra-Lorscheid generalized framework to flag variety/flag matroids.

Next: link our story more closely to tropical geometry and flag variety. But first: an aside on decompositions of the permutohedron ...

1Actually the Dressian, which contains the trop Grassmannian
Decompositions of the permutohedron

Subdivisions of the permutohedron into special Bruhat interval polytopes (isomorphic to cubes) appeared in recent work of:

- Nadeau-Tewari 2022: “Remixed Eulerian numbers”

Can we systematically understand how to cut up $Perm_n$ into BIPs?
Decompositions of the permutohedron

Subdivisions of the permutohedron into special Bruhat interval polytopes (isomorphic to cubes) appeared in recent work of:

- Nadeau-Tewari 2022: “Remixed Eulerian numbers”

Can we systematically understand how to cut up Perm_n into BIPs?
Decompositions of the permutohedron

Subdivisions of the permutohedron into special Bruhat interval polytopes (isomorphic to cubes) appeared in recent work of:

- Nadeau-Tewari 2022: “Remixed Eulerian numbers”

Can we systematically understand how to cut up Perm_n into BIPs?
Subdivisions of the permutohedron into special Bruhat interval polytopes (isomorphic to cubes) appeared in recent work of:

- Nadeau-Tewari 2022: “Remixed Eulerian numbers”
Decompositions of the permutohedron

Subdivisions of the permutohedron into special Bruhat interval polytopes (isomorphic to cubes) appeared in recent work of:

- Nadeau-Tewari 2022: “Remixed Eulerian numbers”

Can we systematically understand how to cut up Perm_n into BIPs?
Decompositions of the permutohedron

Subdivisions of the permutohedron into special Bruhat interval polytopes (isomorphic to cubes) appeared in recent work of:

- Nadeau-Tewari 2022: “Remixed Eulerian numbers”

Can we systematically understand how to cut up Perm_n into BIPs?
Coherent subdivisions of polytopes

General method to produce a polyhedral subdivision of a polytope $P \subset \mathbb{R}^d$:

- Assign a real height $h(v)$ to each vertex $v \in \text{Vert}(P)$.
- Consider the polytope $\tilde{P} := \text{Conv}\{(v, h(v)) \mid v \in \text{Vert}(P)\} \subset \mathbb{R}^{d+1}$.
- Project the lower faces of \tilde{P} back down to P.

Gives polyhedral subdivision of P called coherent (or regular) subdivision.

Questions:
- Can we produce subdivisions of Perm_n into BIPs using this method?
- When does a coherent subdivision of Perm_n consist of BIPs?
Coherent subdivisions of polytopes

General method to produce a polyhedral subdivision of a polytope $P \subset \mathbb{R}^d$:

- Assign a real \textit{height} $h(v)$ to each vertex $v \in \text{Vert}(P)$.
- Consider the polytope $\tilde{P} := \text{Conv}\{(v, h(v)) \mid v \in \text{Vert}(P)\} \subset \mathbb{R}^{d+1}$.
- Project the \textit{lower faces} of \tilde{P} back down to P.

Gives polyhedral subdivision of P called \textit{coherent} (or \textit{regular}) subdivision.

Questions:

- Can we produce subdivisions of Perm_n into BIPs using this method?
- When does a coherent subdivision of Perm_n consist of BIPs?
Coherent subdivisions of polytopes

General method to produce a polyhedral subdivision of a polytope $P \subset \mathbb{R}^d$:

- Assign a real *height* $h(v)$ to each vertex $v \in \text{Vert}(P)$.
- Consider the polytope $\tilde{P} := \text{Conv}\{(v, h(v)) \mid v \in \text{Vert}(P)\} \subset \mathbb{R}^{d+1}$.
- Project the *lower faces* of \tilde{P} back down to P.

Gives polyhedral subdivision of P called *coherent* (or *regular*) subdivision.

Questions:

- Can we produce subdivisions of Perm_n into BIPs using this method?
- When does a coherent subdivision of Perm_n consist of BIPs?
Coherent subdivisions of polytopes

General method to produce a polyhedral subdivision of a polytope \(P \subset \mathbb{R}^d \):

- Assign a real height \(h(v) \) to each vertex \(v \in \text{Vert}(P) \).
- Consider the polytope \(\tilde{P} := \text{Conv}\{(v, h(v)) \mid v \in \text{Vert}(P)\} \subset \mathbb{R}^{d+1} \).
- Project the lower faces of \(\tilde{P} \) back down to \(P \).

Gives polyhedral subdivision of \(P \) called coherent (or regular) subdivision.

Questions:

- Can we produce subdivisions of \(\text{Perm}_n \) into BIPs using this method?
- When does a coherent subdivision of \(\text{Perm}_n \) consist of BIPs?
Coherent subdivisions of polytopes

General method to produce a polyhedral subdivision of a polytope $P \subset \mathbb{R}^d$:

- Assign a real height $h(v)$ to each vertex $v \in \text{Vert}(P)$.
- Consider the polytope $\tilde{P} := \text{Conv}\{(v, h(v)) \mid v \in \text{Vert}(P)\} \subset \mathbb{R}^{d+1}$.
- Project the lower faces of \tilde{P} back down to P.

Gives polyhedral subdivision of P called coherent (or regular) subdivision.

Questions:

- Can we produce subdivisions of Perm_n into BIPs using this method?
- When does a coherent subdivision of Perm_n consist of BIPs?
Coherent subdivisions of polytopes

General method to produce a polyhedral subdivision of a polytope $P \subset \mathbb{R}^d$:

- Assign a real height $h(v)$ to each vertex $v \in \text{Vert}(P)$.
- Consider the polytope $\tilde{P} := \text{Conv}\{(v, h(v)) \mid v \in \text{Vert}(P)\} \subset \mathbb{R}^{d+1}$.
- Project the lower faces of \tilde{P} back down to P.

Gives polyhedral subdivision of P called coherent (or regular) subdivision.

Questions:

- Can we produce subdivisions of Perm_n into BIPs using this method?
- When does a coherent subdivision of Perm_n consist of BIPs?
Coherent subdivisions of polytopes

General method to produce a polyhedral subdivision of a polytope $P \subset \mathbb{R}^d$:

- Assign a real height $h(v)$ to each vertex $v \in \text{Vert}(P)$.
- Consider the polytope $\tilde{P} := \text{Conv}\{(v, h(v)) \mid v \in \text{Vert}(P)\} \subset \mathbb{R}^{d+1}$.
- Project the *lower faces* of \tilde{P} back down to P.

Gives polyhedral subdivision of P called *coherent* (or *regular*) subdivision.

Questions:

- Can we produce subdivisions of Perm_n into BIPs using this method?
- When does a coherent subdivision of Perm_n consist of BIPs?
Coherent subdivisions of polytopes

General method to produce a polyhedral subdivision of a polytope $P \subset \mathbb{R}^d$:

- Assign a real height $h(v)$ to each vertex $v \in \text{Vert}(P)$.
- Consider the polytope $\tilde{P} := \text{Conv}\{(v, h(v)) \mid v \in \text{Vert}(P)\} \subset \mathbb{R}^{d+1}$.
- Project the lower faces of \tilde{P} back down to P.

Gives polyhedral subdivision of P called coherent (or regular) subdivision.

Questions:

- Can we produce subdivisions of Perm_n into BIPs using this method?
- When does a coherent subdivision of Perm_n consist of BIPs?
Coherent subdivisions of polytopes

General method to produce a polyhedral subdivision of a polytope $P \subset \mathbb{R}^d$:

- Assign a real height $h(v)$ to each vertex $v \in \text{Vert}(P)$.
- Consider the polytope $\tilde{P} := \text{Conv}\{(v, h(v)) \mid v \in \text{Vert}(P)\} \subset \mathbb{R}^{d+1}$.
- Project the lower faces of \tilde{P} back down to P.

Gives polyhedral subdivision of P called coherent (or regular) subdivision.

Questions:

- Can we produce subdivisions of Perm_n into BIPs using this method?
- When does a coherent subdivision of Perm_n consist of BIPs?
Definition/Theorem (Boretsky)

The positive tropical flag variety $\text{Tr Fl}_n^{>0}$ is the set of points $\mu = (\mu_I \mid I \subset [n]) \in \mathbb{R}^{2^n}$ satisfying positive trop 3-term Plücker relations:

- for $i < j < k < \ell$ and S disjoint from them,
 $$\mu_{Sk} + \mu_{Sj\ell} = \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Si\ell} + \mu_{Sjk}).$$

- for $i < j < k$ and S disjoint from them,
 $$\mu_{Sj} + \mu_{Si\ell} = \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij}).$$

Remarks:

- Is a theorem because original defn of pos trop flag variety is as the closure of the coordinate-wise valuation of the flag variety over positive Puiseux series.

- Boretsky's result extends to $\text{Tr Fl}_n^{\geq 0}$.
Definition/Theorem (Boretsky)

The *positive tropical flag variety* $\text{Tr Fl}_{n}^{>0}$ is the set of points
\[\mu = (\mu_I \mid I \subseteq [n]) \in \mathbb{R}^{2^n} \] satisfying *positive trop 3-term Plücker relations*:

- for $i < j < k < \ell$ and S disjoint from them,
 \[\mu_{Si} + \mu_{Sk} = \min(\mu_{Sij} + \mu_{Skl}, \mu_{Sil} + \mu_{Sk}) \]
- for $i < j < k$ and S disjoint from them,
 \[\mu_{Sj} + \mu_{Sik} = \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij}) \]

Remarks:

- Is a theorem because original defn of pos trop flag variety is as the closure of the coordinate-wise valuation of the flag variety over positive Puiseux series.
- Boretsky’s result extends to $\text{Tr Fl}_{n}^{\geq 0}$.
Definition/Theorem (Boretsky)

The positive tropical flag variety $\text{Tr Fl}_n^{>0}$ is the set of points $\mu = (\mu_I \mid I \subseteq [n]) \in \mathbb{R}^{2^n}$ satisfying positive trop 3-term Plücker relations:

- For $i < j < k < \ell$ and S disjoint from them,
 $$\mu_{Sik} + \mu_{Sj\ell} = \min(\mu_{Sij} + \mu_{Skl}, \mu_{Sil} + \mu_{Sjk}).$$

- For $i < j < k$ and S disjoint from them,
 $$\mu_{Sj} + \mu_{Sik} = \min(\mu_{Si} + \mu_{Sk}, \mu_{Sk} + \mu_{Sij}).$$

Remarks:

- Is a theorem because original defn of pos trop flag variety is as the closure of the coordinate-wise valuation of the flag variety over positive Puiseux series.
- Boretsky's result extends to $\text{Tr Fl}_n^{\geq 0}$.
Polyhedral/ tropical geometry of complete flag positroids

Definition/Theorem (Boretsky)

The positive tropical flag variety $\text{Tr Fl}_{n}^{>0}$ is the set of points $\mu = (\mu_I \mid I \subseteq [n]) \in \mathbb{R}^{2^n}$ satisfying positive trop 3-term Plücker relations:

- for $i < j < k < \ell$ and S disjoint from them,
 \[\mu_{Sik} + \mu_{Sj\ell} = \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Si\ell} + \mu_{Sjk}). \]
- for $i < j < k$ and S disjoint from them,
 \[\mu_{Sj} + \mu_{Sik} = \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij}). \]

Remarks:

- Is a theorem because original defn of pos trop flag variety is as the closure of the coordinate-wise valuation of the flag variety over positive Puiseux series.
- Boretsky’s result extends to $\text{Tr Fl}_{n}^{\geq 0}$.
The **positive tropical flag variety** $\text{Tr Fl}^>_0_n$ is the set of points $\mu = (\mu_I \mid I \subseteq [n]) \in \mathbb{R}^{2^n}$ satisfying **positive trop 3-term Plücker relations**:

- for $i < j < k < \ell$ and S disjoint from them,
 \[\mu_{Si} + \mu_{S\ell} = \min(\mu_{Sij} + \mu_{Skl}, \mu_{Sil} + \mu_{Sjk}). \]

- for $i < j < k$ and S disjoint from them,
 \[\mu_{Sj} + \mu_{Sk} = \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Si}). \]

Remarks:

- Is a theorem because original defn of pos trop flag variety is as the closure of the coordinate-wise valuation of the flag variety over positive Puiseux series.
- Boretsky’s result extends to $\text{Tr Fl}^>_0_n$.

Definition/Theorem (Boretsky)

The positive tropical flag variety $\text{Tr Fl}^>_0_n$ is the set of points $\mu = (\mu_I \mid I \subseteq [n]) \in \mathbb{R}^{2^n}$ satisfying positive trop 3-term Plücker relations:
The positive tropical flag variety $\text{Tr Fl}_{n}^{>0}$ is the set of points $\mu = (\mu_I \mid I \subseteq [n]) \in \mathbb{R}^{2^n}$ satisfying positive trop 3-term Plücker relations:

- for $i < j < k < \ell$ and S disjoint from them,
 $$\mu_{Sik} + \mu_{Sj\ell} = \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Si\ell} + \mu_{Sjk}).$$
- for $i < j < k$ and S disjoint from them,
 $$\mu_{Sj} + \mu_{Sik} = \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij}).$$

Remarks:

- Is a theorem because original defn of pos trop flag variety is as the closure of the coordinate-wise valuation of the flag variety over positive Puiseux series.
- Boretsky’s result extends to $\text{Tr Fl}_{n}^{\geq 0}$.
The positive tropical flag variety $\text{Tr Fl}^>_0$ is the set of points $\mu = (\mu_I \mid I \subseteq [n]) \in \mathbb{R}^{2^n}$ satisfying positive trop 3-term Plücker relations:

- for $i < j < k < \ell$ and S disjoint from them,
 $$\mu_{Sik} + \mu_{Sj\ell} = \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Si\ell} + \mu_{Skj}).$$

- for $i < j < k$ and S disjoint from them,
 $$\mu_{Sj} + \mu_{Sik} = \min(\mu_{Si} + \mu_{Skj}, \mu_{Sk} + \mu_{Sij}).$$

Remarks:

- Is a theorem because original defn of pos trop flag variety is as the closure of the coordinate-wise valuation of the flag variety over positive Puiseux series.

- Boretsky's result extends to $\text{Tr Fl}^>_0$.
The positive tropical flag variety $\text{Tr Fl}_n^{>0}$ is the set of points $\mu = (\mu_I \mid I \subseteq [n]) \in \mathbb{R}^{2^n}$ satisfying positive trop 3-term Plücker relations:

- for $i < j < k < \ell$ and S disjoint from them,
 $\mu_{Sik} + \mu_{Sj\ell} = \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Si\ell} + \mu_{Sjk})$.

- for $i < j < k$ and S disjoint from them,
 $\mu_{Sj} + \mu_{Sik} = \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij})$.

Remarks:

- Is a theorem because original defn of pos trop flag variety is as the closure of the coordinate-wise valuation of the flag variety over positive Puiseux series.

- Boretsky’s result extends to $\text{Tr Fl}_n^{\geq 0}$.
Def/Thm (Boretsky): \(\text{Tr Fl}_n^{>0} \) is the set of points \(\mu = (\mu_I \mid I \subset [n]) \in \mathbb{R}^{2^n} \) such that for \(i < j < k < \ell \) and \(S \) disjoint from them,

\[
\begin{align*}
\mu_{Sik} + \mu_{Sj\ell} &= \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Si\ell} + \mu_{Sjk}). \\
\mu_{Sj} + \mu_{Si\ell} &= \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij}).
\end{align*}
\]

Theorem (Joswig-Loho-Luber-Olarte)

Let \(\mu = (\mu_I \mid I \subset [n]) \in \mathbb{R}^{2^n} \). The following are equivalent.

- \(\mu \) lies in the positive tropical complete flag variety \(\text{Tr Fl}_n^{>0} \)
- Every face in the coherent subdivision of \(\text{Perm}_n \) induced by \(\mu \) is a BIP.

Example: \(n = 3 \), \((\mu_I) \in \mathbb{R}^3 \) such that

\(\mu_2 + \mu_{13} = \mu_1 + \mu_{23} < \mu_3 + \mu_{12} \). Get:

\[
(1, 3, 2) \quad (2, 3, 1) \quad (3, 1, 2) \quad (3, 2, 1) \quad (2, 1, 3)
\]
Def/Thm (Boretsky): \(\text{Tr Fl}_{n}^{>0} \) is the set of points \(\mu = (\mu_I \mid I \subsetneq [n]) \in \mathbb{R}^{2n} \) such that for \(i < j < k < \ell \) and \(S \) disjoint from them,

- \(\mu_{Si_k} + \mu_{Sj_\ell} = \min(\mu_{Si_j} + \mu_{Sk_\ell}, \mu_{Si_\ell} + \mu_{Sj_k}) \).
- \(\mu_{Sj} + \mu_{Si_k} = \min(\mu_{Si} + \mu_{Sj_k}, \mu_{Sk} + \mu_{Si_j}) \).

Theorem (Joswig-Loho-Luber-Olarte)

Let \(\mu = (\mu_I \mid I \subsetneq [n]) \in \mathbb{R}^{2n} \). The following are equivalent.

- \(\mu \) lies in the positive tropical complete flag variety \(\text{Tr Fl}_{n}^{>0} \)
- Every face in the coherent subdivision of \(\text{Perm}_n \) induced by \(\mu \) is a BIP.

Example: \(n = 3 \), \((\mu_I) \in \mathbb{R}^3\) such that
\[
\mu_2 + \mu_{13} = \mu_1 + \mu_{23} < \mu_3 + \mu_{12}.
\]
Get:
\[
(2, 3, 1), (3, 1, 2), (1, 3, 2), (2, 1, 3), (1, 2, 3), (3, 2, 1).
\]
Polyhedral/ tropical geometry of complete flag positroids

Definition/ Theorem (Boretsky): \(\text{Tr Fl}_n^{>0} \) is the set of points \(\mu = (\mu_I \mid I \subset [n]) \in \mathbb{R}^{2^n} \) such that for \(i < j < k < \ell \) and \(S \) disjoint from them,

- \(\mu_{Si} + \mu_{Sj} = \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Si\ell} + \mu_{Sjk}) \).
- \(\mu_{Sj} + \mu_{Si} = \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij}) \).

Theorem (Joswig-Loho-Luber-Olarte)

Let \(\mu = (\mu_I \mid I \subset [n]) \in \mathbb{R}^{2^n} \). The following are equivalent.

- \(\mu \) lies in the positive tropical complete flag variety \(\text{Tr Fl}_n^{>0} \).
- Every face in the coherent subdivision of \(\text{Perm}_n \) induced by \(\mu \) is a BIP.

Example: \(n = 3, (\mu_I) \in \mathbb{R}^{2^3} \) such that

\[\mu_2 + \mu_{13} = \mu_1 + \mu_{23} < \mu_3 + \mu_{12}. \]

Get:

- \((2, 3, 1)\)
- \((1, 3, 2)\)
- \((2, 1, 3)\)
- \((1, 2, 3)\)
- \((3, 1, 2)\)
- \((3, 2, 1)\)
Def/Thm (Boretsky): $\text{Tr } \text{Fl}_n^{>0}$ is the set of points $\mu = (\mu_I \mid I \subset [n]) \in \mathbb{R}^{2n}$ such that for $i < j < k < \ell$ and S disjoint from them,

- $\mu_{Sik} + \mu_{Sj\ell} = \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Si\ell} + \mu_{Sjk})$.
- $\mu_{Sj} + \mu_{Sik} = \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij})$.

Theorem (Joswig-Loho-Luber-Olarte)

Let $\mu = (\mu_I \mid I \subset [n]) \in \mathbb{R}^{2n}$. The following are equivalent.

- μ lies in the positive tropical complete flag variety $\text{Tr } \text{Fl}_n^{>0}$
- Every face in the coherent subdivision of Perm_n induced by μ is a BIP.

Example: $n = 3, (\mu_I) \in \mathbb{R}^{2^3}$ such that $\mu_2 + \mu_{13} = \mu_1 + \mu_{23} < \mu_3 + \mu_{12}$. Get:

- $(1, 3, 2)$
- $(2, 3, 1)$
- $(3, 1, 2)$
- $(3, 2, 1)$
- $(2, 1, 3)$
- $(1, 2, 3)$
Def/Thm (Boretsky): Tr Fl$^>_0$ is the set of points $\mu = (\mu_I \mid I \subsetneq [n]) \in \mathbb{R}^{2n}$ such that for $i < j < k < \ell$ and S disjoint from them,

- $\mu_{Sik} + \mu_{Sj\ell} = \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Sil} + \mu_{Sjk})$.
- $\mu_{Sj} + \mu_{Sik} = \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij})$.

Theorem (Joswig-Loho-Luber-Olarte)

Let $\mu = (\mu_I \mid I \subsetneq [n]) \in \mathbb{R}^{2n}$. The following are equivalent.

- μ lies in the positive tropical complete flag variety Tr Fl$^>_0$
- Every face in the coherent subdivision of Perm$_n$ induced by μ is a BIP.

Example: $n = 3, (\mu_I) \in \mathbb{R}^3$ such that

$\mu_2 + \mu_{13} = \mu_1 + \mu_{23} < \mu_3 + \mu_{12}$. Get:

$$(3, 2, 1) \quad (2, 3, 1) \quad (1, 3, 2)$$

$$(3, 1, 2) \quad (2, 1, 3)$$

$$(1, 2, 3)$$
Def/Thm (Boretsky): $\text{Tr Fl}_n^{>0}$ is the set of points $\mu = (\mu_I \mid I \subsetneq [n]) \in \mathbb{R}^{2^n}$ such that for $i < j < k < \ell$ and S disjoint from them,

\begin{align*}
\mu_{Sik} + \mu_{Sj\ell} &= \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Si\ell} + \mu_{Sjk}), \\
\mu_{Sj} + \mu_{Sik} &= \min(\mu_{Si} + \mu_{Sjk}, \mu_{Sk} + \mu_{Sij}).
\end{align*}

Theorem (Joswig-Loho-Luber-Olarte)

Let $\mu = (\mu_I \mid I \subsetneq [n]) \in \mathbb{R}^{2^n}$. The following are equivalent.

- μ lies in the positive tropical complete flag variety $\text{Tr Fl}_n^{>0}$
- Every face in the coherent subdivision of Perm_n induced by μ is a BIP.

Example: $n = 3, (\mu_I) \in \mathbb{R}^3$ such that

$\mu_2 + \mu_{13} = \mu_1 + \mu_{23} < \mu_3 + \mu_{12}$. Get:

- $(3, 2, 1)$
- $(2, 3, 1)$
- $(3, 1, 2)$
- $(1, 3, 2)$
- $(2, 1, 3)$
- $(1, 2, 3)$
Subdivisions of Perm\(_4\) into BIPs using Tr Fl\(\mathbf{1}_4^{>0}\)

<table>
<thead>
<tr>
<th>Height function ((\mu_1, \mu_2, \mu_3, \mu_4; \mu_{12}, \mu_{13}, \mu_{14}, \mu_{23}, \mu_{24}, \mu_{34}; \mu_{123}, \mu_{124}, \mu_{134}, \mu_{234}))</th>
<th>Bruhat interval polytopes in subdivision</th>
<th>(f)-vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>((15, -1, -7, -7; -4, -2, -2, -2, -2, -4; 7, -7, -7, -1, 15))</td>
<td>(\mathcal{Q}{3124, 4321}, \mathcal{Q}{3124, 4231}, \mathcal{Q}{2314, 3421}, \mathcal{Q}{2134, 3241}, \mathcal{Q}{1324, 2431}, \mathcal{Q}{1234, 2341})</td>
<td>(24, 46, 29, 6)</td>
</tr>
<tr>
<td>((15, 3, -9, -9; 4, -8, -8, -4, -4, -4, 20, -1, -1, -1, -1, 3))</td>
<td>(\mathcal{Q}{2413, 4321}, \mathcal{Q}{3124, 4231}, \mathcal{Q}{2314, 4231}, \mathcal{Q}{2134, 3241}, \mathcal{Q}{1324, 2431}, \mathcal{Q}{1234, 2341})</td>
<td></td>
</tr>
<tr>
<td>((15, -7, -1, -7; -2, 4, -2, -2, 4, -2, -7, -1, -7, 15))</td>
<td>(\mathcal{Q}{3142, 4321}, \mathcal{Q}{3124, 4312}, \mathcal{Q}{2143, 3421}, \mathcal{Q}{2134, 3412}, \mathcal{Q}{1243, 2431}, \mathcal{Q}{1234, 2413})</td>
<td></td>
</tr>
<tr>
<td>((-1, -1, -1, 3; 4, -8, -4, -8, -4, -8, -4, 20; 15, 3, -9, -9))</td>
<td>(\mathcal{Q}{2413, 4321}, \mathcal{Q}{1423, 4231}, \mathcal{Q}{1324, 4231}, \mathcal{Q}{1324, 4132}, \mathcal{Q}_{1324, 4123})</td>
<td></td>
</tr>
<tr>
<td>((-7, -7, -1, 15; 4, -2, -2, -2, -2, 4; 15, -1, -7, -7))</td>
<td>(\mathcal{Q}{1432, 4321}, \mathcal{Q}{1423, 4312}, \mathcal{Q}{1324, 4231}, \mathcal{Q}{1324, 4132}, \mathcal{Q}_{1234, 4123})</td>
<td></td>
</tr>
<tr>
<td>((-1, -7, -7, 15; -2, -2, -2, 4, -2, -2, 15, -7, -7, -1))</td>
<td>(\mathcal{Q}{3142, 4321}, \mathcal{Q}{2143, 4312}, \mathcal{Q}{2134, 4231}, \mathcal{Q}{1324, 3421}, \mathcal{Q}_{1234, 2413})</td>
<td></td>
</tr>
<tr>
<td>((-9, -9, 3, 15; 20, -4, -8, -4, -8, 4, 3, -1, -1, -1))</td>
<td>(\mathcal{Q}{1432, 4321}, \mathcal{Q}{1423, 4312}, \mathcal{Q}{1324, 4231}, \mathcal{Q}{1324, 4132}, \mathcal{Q}_{1324, 4123})</td>
<td></td>
</tr>
<tr>
<td>((11, -7, -7, 3; -6, -6, 4, 4, 2, 2; 11, -7, -7, 3))</td>
<td>(\mathcal{Q}{3142, 4321}, \mathcal{Q}{2143, 4312}, \mathcal{Q}{2134, 4231}, \mathcal{Q}{2134, 4132}, \mathcal{Q}_{1234, 2413})</td>
<td></td>
</tr>
<tr>
<td>((3, 3, -3, -3; 20, -10, -10, -10, -10, 20; -3, -3, 3, 3))</td>
<td>(\mathcal{Q}{2413, 4321}, \mathcal{Q}{3124, 4231}, \mathcal{Q}{3214, 4231}, \mathcal{Q}{1324, 2431}, \mathcal{Q}_{1234, 2431})</td>
<td></td>
</tr>
<tr>
<td>((3, -1, -1, -1; 20, -4, -4, -8, -8, 4; -9, -9, 3, 15))</td>
<td>(\mathcal{Q}{3214, 4321}, \mathcal{Q}{3124, 4231}, \mathcal{Q}{2314, 3421}, \mathcal{Q}{1324, 3241}, \mathcal{Q}_{1234, 3142})</td>
<td></td>
</tr>
<tr>
<td>((-3, -3, 3, 3; 20, -10, -10, -10, -10, 20; 3, 3, -3, -3))</td>
<td>(\mathcal{Q}{2413, 4321}, \mathcal{Q}{1423, 4231}, \mathcal{Q}{1324, 4231}, \mathcal{Q}{1324, 4132}, \mathcal{Q}_{1324, 4123})</td>
<td></td>
</tr>
<tr>
<td>((3, -7, -7, 11; 2, 2, 4, 4, -6, -6, 3, -7, -7, 11))</td>
<td>(\mathcal{Q}{3142, 4321}, \mathcal{Q}{3124, 4312}, \mathcal{Q}{1324, 4312}, \mathcal{Q}{1234, 3421}, \mathcal{Q}{1234, 3412}, \mathcal{Q}{1234, 3412})</td>
<td></td>
</tr>
<tr>
<td>((11, -1, -7, -3; -2, -8, -4, -4, 0, 18; 11, -1, -7, -3))</td>
<td>(\mathcal{Q}{2413, 4321}, \mathcal{Q}{2143, 4231}, \mathcal{Q}{2134, 4213}, \mathcal{Q}{1243, 2431}, \mathcal{Q}_{1234, 2413})</td>
<td></td>
</tr>
<tr>
<td>((-3, -7, -1, 11; 18, 0, -4, -4, -8, -2; -3, -7, -1, 11))</td>
<td>(\mathcal{Q}{3142, 4321}, \mathcal{Q}{3124, 4312}, \mathcal{Q}{1324, 4312}, \mathcal{Q}{1324, 3412}, \mathcal{Q}_{1234, 3412})</td>
<td>(24, 45, 27, 5)</td>
</tr>
</tbody>
</table>
The first subdivision in previous table is the one from Nadeau-Tewari.

Tr $\mathcal{F}_4 >^0$ is a polyhedral fan with 14 cones. Has same combinatorics as associahedron, and is closely connected to cluster algebra of type A_3 (which is the cluster type of \mathcal{F}_4).

Open question: describe combinatorics of $\text{Tr } \mathcal{F}_n >^0$ more generally. How many maximal cones?
Subdivisions of Perm_4 into BIPs using $\text{Tr Fl}^>_0$

- The first subdivision in previous table is the one from Nadeau-Tewari.
- $\text{Tr Fl}^>_0$ is a polyhedral fan with 14 cones. Has same combinatorics as associahedron, and is closely connected to cluster algebra of type A_3 (which is the cluster type of Fl_4).
- Open question: describe combinatorics of $\text{Tr Fl}^>_n$ more generally. How many maximal cones?
The first subdivision in previous table is the one from Nadeau-Tewari.

$\text{Tr Fl}^>_0$ is a polyhedral fan with 14 cones.

Has same combinatorics as associahedron, and is closely connected to cluster algebra of type A_3 (which is the cluster type of Fl_4).

Open question: describe combinatorics of $\text{Tr Fl}^>_n$ more generally. How many maximal cones?
The first subdivision in previous table is the one from Nadeau-Tewari.

$\text{Tr Fl}_4^{>0}$ is a polyhedral fan with 14 cones. Has same combinatorics as associahedron, and is closely connected to cluster algebra of type A_3 (which is the cluster type of Fl$_4$).

Open question: describe combinatorics of $\text{Tr Fl}_n^{>0}$ more generally. How many maximal cones?
The first subdivision in previous table is the one from Nadeau-Tewari.

\(\text{Tr Fl}_4^{>0} \) is a polyhedral fan with 14 cones. Has same combinatorics as associahedron, and is closely connected to cluster algebra of type \(A_3 \) (which is the cluster type of \(\text{Fl}_4 \)).

Open question: describe combinatorics of \(\text{Tr Fl}_n^{>0} \) more generally. How many maximal cones?
Subdivisions of Perm_4 into BIPs using $\text{Tr Fl}^>^0_4$

- The first subdivision in previous table is the one from Nadeau-Tewari.
- $\text{Tr Fl}^>^0_4$ is a polyhedral fan with 14 cones.
 Has same combinatorics as associahedron, and is closely connected to cluster algebra of type A_3 (which is the cluster type of Fl_4).
- Open question: describe combinatorics of $\text{Tr Fl}^>^0_n$ more generally.

How many maximal cones?
The first subdivision in previous table is the one from Nadeau-Tewari.

\(\text{Tr Fl}_{4}^{>0} \) is a polyhedral fan with 14 cones. Has same combinatorics as associahedron, and is closely connected to cluster algebra of type \(A_{3} \) (which is the cluster type of \(\text{Fl}_{4} \)).

Open question: describe combinatorics of \(\text{Tr Fl}_{n}^{>0} \) more generally. How many maximal cones?
Next: we will generalize the previous theorem in two ways:

- The previous theorem was for about the (complete) flag variety. We will extend to more general partial flag varieties.
- We will replace the adjectives “positive” by “nonnegative”, which allows us to look at subdivisions of more general polytopes (not just permutohedron).
Next: we will generalize the previous theorem in two ways:

- The previous theorem was for about the (complete) flag variety. We will extend to more general partial flag varieties.
- We will replace the adjectives “positive” by “nonnegative”, which allows us to look at subdivisions of more general polytopes (not just permutohedron).
Next: we will generalize the previous theorem in two ways:

- The previous theorem was for about the (complete) flag variety. We will extend to more general partial flag varieties.
- We will replace the adjectives “positive” by “nonnegative”, which allows us to look at subdivisions of more general polytopes (not just permutohedron).
Next: we will generalize the previous theorem in two ways:

- The previous theorem was for about the (complete) flag variety. We will extend to more general partial flag varieties.
- We will replace the adjectives “positive” by “nonnegative”, which allows us to look at subdivisions of more general polytopes (not just permutohedron).
The flag variety

Let \(R = \{r_1 < \cdots < r_k\} \subseteq [n] = \{1, 2, \ldots, n\} \). The flag variety \(\text{Fl}_{R;n} \) is

\[
\text{Fl}_{R;n} = \{(V_1, \ldots, V_k) \mid 0 \subset V_1 \subset \cdots \subset V_k \subset \mathbb{R}^n \text{ and } \dim V_i = r_i \forall i\}
\]

Special cases:
- If \(R = [n] \): complete flag variety \(\text{Fl}_n \)
- If \(R = \{r\} \): Grassmannian \(\text{Gr}_{r,n} \).

Can represent an element of \(\text{Fl}_{R;n} \) by an \(r_k \times n \) matrix \(A \) such that the span of the top \(r_i \) rows is \(V_i \).

Example: \(A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) represents an element of \(\text{Fl}_3 \).

For \(I \subset [n] \), the Plücker coordinate (or flag minor) \(p_I(A) \) is the determinant of the submatrix in columns \(I \) and rows 1, 2, \ldots, \(|I| \).
The flag variety

Let $R = \{r_1 < \cdots < r_k\} \subseteq [n] = \{1, 2, \ldots, n\}$. The flag variety $\text{Fl}_{R; n}$ is

$$\text{Fl}_{R; n} = \{(V_1, \ldots, V_k) \mid 0 \subset V_1 \subset \cdots \subset V_k \subset \mathbb{R}^n \text{ and } \dim V_i = r_i \ \forall i\}$$

Special cases:

- If $R = [n]$: complete flag variety Fl_n
- If $R = \{r\}$: Grassmannian $\text{Gr}_{r, n}$.

Can represent an element of $\text{Fl}_{R; n}$ by an $r_k \times n$ matrix A such that the span of the top r_i rows is V_i.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

represents an element of Fl_3.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ represents an element of Fl_3.

For $I \subseteq [n]$, the Plücker coordinate (or flag minor) $p_I(A)$ is the determinant of the submatrix in columns I and rows $1, 2, \ldots, |I|$.
The flag variety

Let \(R = \{ r_1 < \cdots < r_k \} \subseteq [n] = \{1, 2, \ldots, n\} \). The flag variety \(\text{Fl}_{R;n} \) is

\[
\text{Fl}_{R;n} = \{ (V_1, \ldots, V_k) \mid 0 \subset V_1 \subset \cdots \subset V_k \subset \mathbb{R}^n \text{ and } \dim V_i = r_i \ \forall i \}
\]

Special cases:
- If \(R = [n] \): complete flag variety \(\text{Fl}_n \)
- If \(R = \{r\} \): Grassmannian \(\text{Gr}_{r,n} \).

Can represent an element of \(\text{Fl}_{R;n} \) by an \(r_k \times n \) matrix \(A \) such that the span of the top \(r_i \) rows is \(V_i \).

Example: \(A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) represents an element of \(\text{Fl}_3 \).

For \(I \subseteq [n] \), the Plücker coordinate (or flag minor) \(p_I(A) \) is the determinant of the submatrix in columns \(I \) and rows \(1, 2, \ldots, |I| \).
The flag variety

Let \(R = \{ r_1 < \cdots < r_k \} \subseteq [n] = \{1, 2, \ldots, n\} \). The flag variety \(\text{Fl}_{R;n} \) is

\[
\text{Fl}_{R;n} = \{ (V_1, \ldots, V_k) \mid 0 \subset V_1 \subset \cdots \subset V_k \subset \mathbb{R}^n \text{ and } \dim V_i = r_i \ \forall i \}
\]

Special cases:
- If \(R = [n] \): complete flag variety \(\text{Fl}_n \)
- If \(R = \{ r \} \): Grassmannian \(\text{Gr}_{r,n} \).

Can represent an element of \(\text{Fl}_{R;n} \) by an \(r_k \times n \) matrix \(A \) such that the span of the top \(r_i \) rows is \(V_i \).

Example: \(A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) represents an element of \(\text{Fl}_3 \).

For \(I \subseteq [n] \), the Plücker coordinate (or flag minor) \(p_I(A) \) is the determinant of the submatrix in columns \(I \) and rows 1, 2, \ldots, \(|I| \).
Let $R = \{r_1 < \cdots < r_k\} \subseteq [n] = \{1, 2, \ldots, n\}$. The flag variety $\text{Fl}_{R;n}$ is
\[\text{Fl}_{R;n} = \{(V_1, \ldots, V_k) \mid 0 \subset V_1 \subset \cdots \subset V_k \subset \mathbb{R}^n \text{ and } \dim V_i = r_i \ \forall i\}\]

Special cases:
- If $R = [n]$: complete flag variety Fl_n
- If $R = \{r\}$: Grassmannian $\text{Gr}_{r,n}$.

Can represent an element of $\text{Fl}_{R;n}$ by an $r_k \times n$ matrix A such that the span of the top r_i rows is V_i.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ represents an element of Fl_3.

For $I \subseteq [n]$, the Plücker coordinate (or flag minor) $p_I(A)$ is the determinant of the submatrix in columns I and rows $1, 2, \ldots, |I|$.
The flag variety

Let \(R = \{ r_1 < \cdots < r_k \} \subseteq [n] = \{ 1, 2, \ldots, n \} \). The flag variety \(\text{Fl}_{R;n} \) is

\[
\text{Fl}_{R;n} = \{(V_1, \ldots, V_k) \mid 0 \subset V_1 \subset \cdots \subset V_k \subset \mathbb{R}^n \text{ and } \dim V_i = r_i \ \forall i\}
\]

Special cases:

- If \(R = [n] \): complete flag variety \(\text{Fl}_n \)
- If \(R = \{ r \} \): Grassmannian \(\text{Gr}_{r,n} \).

Can represent an element of \(\text{Fl}_{R;n} \) by an \(r_k \times n \) matrix \(A \) such that the span of the top \(r_i \) rows is \(V_i \).

Example: \(A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) represents an element of \(\text{Fl}_3 \).

For \(I \subseteq [n] \), the Plücker coordinate (or flag minor) \(p_I(A) \) is the determinant of the submatrix in columns \(I \) and rows 1, 2, \ldots, \(|I| \).
The flag variety

Let $R = \{r_1 < \cdots < r_k\} \subseteq [n] = \{1, 2, \ldots, n\}$. The flag variety $\text{Fl}_{R; n}$ is

$$\text{Fl}_{R; n} = \{(V_1, \ldots, V_k) \mid 0 \subset V_1 \subset \cdots \subset V_k \subset \mathbb{R}^n \text{ and } \dim V_i = r_i \ \forall i\}$$

Special cases:

- If $R = [n]$: complete flag variety Fl_n
- If $R = \{r\}$: Grassmannian $\text{Gr}_{r,n}$.

Can represent an element of $\text{Fl}_{R; n}$ by an $r_k \times n$ matrix A such that the span of the top r_i rows is V_i.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ represents an element of Fl_3.

For $I \subset [n]$, the Plücker coordinate (or flag minor) $p_I(A)$ is the determinant of the submatrix in columns I and rows $1, 2, \ldots, |I|$.
Let $R = (r_1 < \cdots < r_k) \subset [n]$. A flag matroid of ranks R is a sequence $M = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of

$$P(M) = P(M_1) + \cdots + P(M_k)$$

(Minkowski sum) are equidistant from the origin. $P(M)$ then called a flag matroid polytope.

If $\exists r_k \times n$ matrix A whose top r_i rows realize $M_i \ \forall i$, say A realizes M.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Let $R = (r_1 < \cdots < r_k) \subset [n]$.
Let A be a matrix giving a realization of flag matroid $M = (M_1, \ldots, M_k)$. If the flag minors $p_I(A) \geq 0$ for $|I| \in \{r_1, \ldots, r_k\}$, we say M is a flag positroid and $P(M)$ a flag positroid polytope.

Note: by definition, a flag positroid is realizable.
Let $R = (r_1 < \cdots < r_k) \subset [n]$. A **flag matroid** of ranks R is a sequence $\mathcal{M} = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of $P(\mathcal{M}) = P(M_1) + \cdots + P(M_k)$ (Minkowski sum) are equidistant from the origin. $P(\mathcal{M})$ then called a **flag matroid polytope**.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Let $R = (r_1 < \cdots < r_k) \subset [n]$. Let A be a matrix giving a realization of flag matroid $\mathcal{M} = (M_1, \ldots, M_k)$. If the flag minors $p_I(A) \geq 0$ for $|I| \in \{r_1, \ldots, r_k\}$, we say \mathcal{M} is a **flag positroid** and $P(M)$ a **flag positroid polytope**.

Note: by definition, a flag positroid is realizable.
Let $R = (r_1 < \cdots < r_k) \subset [n]$. A flag matroid of ranks R is a sequence $\underline{M} = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of

$$P(M) = P(M_1) + \cdots + P(M_k) \quad \text{(Minkowski sum)}$$

are equidistant from the origin. $P(M)$ then called a flag matroid polytope.

If $\exists r_k \times n$ matrix A whose top r_i rows realize $M_i \ \forall i$, say A realizes \underline{M}.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Let $R = (r_1 < \cdots < r_k) \subset [n]$. Let A be a matrix giving a realization of flag matroid $\underline{M} = (M_1, \ldots, M_k)$. If the flag minors $p_I(A) \geq 0$ for $|I| \in \{r_1, \ldots, r_k\}$, we say \underline{M} is a flag positroid and $P(M)$ a flag positroid polytope.

Note: by definition, a flag positroid is realizable.
Let $R = (r_1 < \cdots < r_k) \subset [n]$. A flag matroid of ranks R is a sequence $\underline{M} = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of

$$P(\underline{M}) = P(M_1) + \cdots + P(M_k) \quad \text{(Minkowski sum)}$$

are equidistant from the origin. $P(\underline{M})$ then called a flag matroid polytope.

If $\exists r_k \times n$ matrix A whose top r_i rows realize $M_i \ \forall i$, say A realizes \underline{M}.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Let $R = (r_1 < \cdots < r_k) \subset [n]$.

Let A be a matrix giving a realization of flag matroid $\underline{M} = (M_1, \ldots, M_k)$. If the flag minors $p_I(A) \geq 0$ for $|I| \in \{r_1, \ldots, r_k\}$, we say \underline{M} is a flag positroid and $P(\underline{M})$ a flag positroid polytope.

Note: by definition, a flag positroid is realizable.
Let $R = (r_1 < \cdots < r_k) \subset [n]$. A flag matroid of ranks R is a sequence $\underline{M} = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of

$$P(\underline{M}) = P(M_1) + \cdots + P(M_k)$$

(Minkowski sum)

are equidistant from the origin. $P(\underline{M})$ then called a flag matroid polytope.

If $\exists r_k \times n$ matrix A whose top r_i rows realize M_i $\forall i$, say A realizes \underline{M}.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
Let $R = (r_1 < \cdots < r_k) \subseteq [n]$. A flag matroid of ranks R is a sequence $\mathcal{M} = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of

$$P(\mathcal{M}) = P(M_1) + \cdots + P(M_k)$$

are equidistant from the origin. $P(\mathcal{M})$ then called a flag matroid polytope.

If $\exists r_k \times n$ matrix A whose top r_i rows realize $M_i \ \forall i$, say A realizes \mathcal{M}.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Let $R = (r_1 < \cdots < r_k) \subseteq [n]$.

Let A be a matrix giving a realization of flag matroid $\mathcal{M} = (M_1, \ldots, M_k)$. If the flag minors $p_I(A) \geq 0$ for $|I| \in \{r_1, \ldots, r_k\}$, we say \mathcal{M} is a flag positroid and $P(\mathcal{M})$ a flag positroid polytope.

Note: by definition, a flag positroid is realizable.
Let $R = (r_1 < \cdots < r_k) \subset [n]$. A flag matroid of ranks R is a sequence $\underline{M} = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of

$$P(\underline{M}) = P(M_1) + \cdots + P(M_k) \quad \text{(Minkowski sum)}$$

are equidistant from the origin. $P(\underline{M})$ then called a flag matroid polytope.

If $\exists r_k \times n$ matrix A whose top r_i rows realize $M_i \ \forall i$, say A realizes \underline{M}.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Let $R = (r_1 < \cdots < r_k) \subset [n]$.

Let A be a matrix giving a realization of flag matroid $\underline{M} = (M_1, \ldots, M_k)$.

If the flag minors $p_I(A) \geq 0$ for $|I| \in \{r_1, \ldots, r_k\}$, we say \underline{M} is a flag positroid and $P(\underline{M})$ a flag positroid polytope.

Note: by definition, a flag positroid is realizable.
Let $R = (r_1 < \cdots < r_k) \subset [n]$. A flag matroid of ranks R is a sequence $M = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of

$$P(M) = P(M_1) + \cdots + P(M_k)$$

(Minkowski sum)

are equidistant from the origin. $P(M)$ then called a flag matroid polytope.

If $\exists r_k \times n$ matrix A whose top r_i rows realize $M_i \ \forall i$, say A realizes M.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Note: by definition, a flag positroid is realizable.
Flag matroids, flag positroids, and their polytopes

Let \(R = (r_1 < \cdots < r_k) \subset [n] \). A flag matroid of ranks \(R \) is a sequence \(\underline{M} = (M_1, \ldots, M_k) \) of matroids of ranks \(r_i \) on \([n] \) such that all vertices of

\[
P(\underline{M}) = P(M_1) + \cdots + P(M_k) \quad \text{(Minkowski sum)}
\]

are equidistant from the origin. \(P(\underline{M}) \) then called a flag matroid polytope.

If \(\exists r_k \times n \) matrix \(A \) whose top \(r_i \) rows realize \(M_i \) \(\forall i \), say \(A \) realizes \(\underline{M} \).

Example: \(A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \)

Let \(R = (r_1 < \cdots < r_k) \subset [n] \).
Let \(A \) be a matrix giving a realization of flag matroid \(\underline{M} = (M_1, \ldots, M_k) \).
If the flag minors \(p_I(A) \geq 0 \) for \(|I| \in \{r_1, \ldots, r_k\} \), we say \(\underline{M} \) is a flag positroid and \(P(\underline{M}) \) a flag positroid polytope.

Note: by definition, a flag positroid is realizable.
Let \(R = (r_1 < \cdots < r_k) \subset [n] \). A flag matroid of ranks \(R \) is a sequence \(M = (M_1, \ldots, M_k) \) of matroids of ranks \(r_i \) on \([n]\) such that all vertices of

\[P(M) = P(M_1) + \cdots + P(M_k) \] (Minkowski sum)

are equidistant from the origin. \(P(M) \) then called a flag matroid polytope.

If \(\exists \) \(r_k \times n \) matrix \(A \) whose top \(r_i \) rows realize \(M_i \) \(\forall i \), say \(A \) realizes \(M \).

Example: \(A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \)

Let \(R = (r_1 < \cdots < r_k) \subset [n] \).
Let \(A \) be a matrix giving a realization of flag matroid \(M = (M_1, \ldots, M_k) \).
If the flag minors \(p_I(A) \geq 0 \) for \(|I| \in \{r_1, \ldots, r_k\} \), we say \(M \) is a flag positroid and \(P(M) \) a flag positroid polytope.

Note: by definition, a flag positroid is realizable.
Let $R = (r_1 < \cdots < r_k) \subset [n]$. A flag matroid of ranks R is a sequence $\underline{M} = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of

$$P(\underline{M}) = P(M_1) + \cdots + P(M_k) \quad \text{(Minkowski sum)}$$

are equidistant from the origin. $P(\underline{M})$ then called a flag matroid polytope.

If $\exists r_k \times n$ matrix A whose top r_i rows realize $M_i \ \forall i$, say A realizes \underline{M}.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Let $R = (r_1 < \cdots < r_k) \subset [n]$.

Let A be a matrix giving a realization of flag matroid $\underline{M} = (M_1, \ldots, M_k)$. If the flag minors $p_I(A) \geq 0$ for $|I| \in \{r_1, \ldots, r_k\}$, we say \underline{M} is a flag positroid and $P(\underline{M})$ a flag positroid polytope.

Note: by definition, a flag positroid is realizable.
Let $R = (r_1 < \cdots < r_k) \subset [n]$. A flag matroid of ranks R is a sequence $\underline{M} = (M_1, \ldots, M_k)$ of matroids of ranks r_i on $[n]$ such that all vertices of

$$P(\underline{M}) = P(M_1) + \cdots + P(M_k)$$

(Minkowski sum)

are equidistant from the origin. $P(\underline{M})$ then called a flag matroid polytope.

If $\exists r_k \times n$ matrix A whose top r_i rows realize $M_i \ \forall i$, say A realizes \underline{M}.

Example: $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Let $R = (r_1 < \cdots < r_k) \subset [n]$. Let A be a matrix giving a realization of flag matroid $\underline{M} = (M_1, \ldots, M_k)$. If the flag minors $p_I(A) \geq 0$ for $|I| \in \{r_1, \ldots, r_k\}$, we say \underline{M} is a flag positroid and $P(\underline{M})$ a flag positroid polytope.

Note: by definition, a flag positroid is realizable.
Theorem (Boretsky–Eur–W)

Let $R = (a, a + 1, \ldots, b) \subset [n]$. Let
\[\mu = (\mu^a, \mu^{a+1}, \ldots, \mu^b) \in \prod_{i=a}^{b} (\mathbb{R} \cup \{\infty\})^{[n]}. \]

TFAE:

- μ lies in the nonnegative tropical flag variety $\text{Tr Fl}_{R;n}^{\geq 0}$, that is, μ obeys all positive tropical 3-term Plücker relations and incidence Plücker relations.
- Every face in the coherent subdivision of the polytope $P(\mu^a) + \cdots + P(\mu^b)$ is a flag positroid polytope.

Note: we do not know if the result holds for arbitrary sequences $R = (r_1 < \cdots < r_k) \subset [n]$.\(^2\)

\(^2\)One ingredient in proof is fact that the two notions of positivity for flag varieties (Plücker positivity vs Lusztig positivity) coincide iff R a consecutive subset (Bloch–Karp).
Theorem (Boretsky–Eur–W)

Let R be a sequence of consecutive integers $(a, a + 1, \ldots, b) \subset [n]$. Let

$\mu = (\mu_a, \mu_{a+1}, \ldots, \mu_b) \in \prod_{i=a}^{b}(\mathbb{R} \cup \{\infty\})^{[n]}.\ TFAE:

- μ lies in the nonnegative tropical flag variety $\text{Tr Fl}_{R;n}^{\geq 0}$; that is, μ obeys all positive tropical 3-term Plücker relations and incidence Plücker relations.

- Every face in the coherent subdivision of the polytope $P(\mu_a) + \cdots + P(\mu_b)$ is a flag positroid polytope.

Note: we do not know if the result holds for arbitrary sequences $R = (r_1 < \cdots < r_k) \subset [n].$ ²

²One ingredient in proof is fact that the two notions of positivity for flag varieties (Plücker positivity vs Lusztig positivity) coincide iff R a consecutive subset (Bloch–Karp).
Theorem (Boretsky–Eur–W)

Let R be a sequence of consecutive integers $(a, a + 1, \ldots, b) \subset [n]$. Let $\mu = (\mu^a, \mu^{a+1}, \ldots, \mu^b) \in \prod_{i=a}^{b}([n])^{(i)}$. TFAE:

- μ lies in the nonnegative tropical flag variety $\text{Tr Fl}_{R; n}^{\geq 0}$; that is, μ obeys all positive tropical 3-term Plücker relations and incidence Plücker relations.
- Every face in the coherent subdivision of the polytope $P(\mu^a) + \cdots + P(\mu^b)$ is a flag positroid polytope.

Note: we do not know if the result holds for arbitrary sequences $R = (r_1 < \cdots < r_k) \subset [n]$.\(^2\)

\(^2\)One ingredient in proof is fact that the two notions of positivity for flag varieties (Plücker positivity vs Lusztig positivity) coincide iff R a consecutive subset (Bloch–Karpp).
Theorem (Boretsky–Eur–W)

Let R be a sequence of consecutive integers $(a, a + 1, \ldots, b) \subset [n]$. Let
\[\mu = (\mu_a, \mu_{a+1}, \ldots, \mu_b) \in \prod_{i=a}^{b} (\mathbb{R} \cup \{\infty\})^{([n])}. \]

TFAE:

- μ lies in the nonnegative tropical flag variety $\text{Tr Fl}_{R; n}^{\geq 0}$; that is, μ obeys all positive tropical 3-term Plücker relations and incidence Plücker relations.

- Every face in the coherent subdivision of the polytope $P(\mu_a) + \cdots + P(\mu_b)$ is a flag positroid polytope.

Note: we do not know if the result holds for arbitrary sequences $R = (r_1 < \cdots < r_k) \subset [n]$.\(^2\)

\(^2\)One ingredient in proof is fact that the two notions of positivity for flag varieties (Plücker positivity vs Lusztig positivity) coincide iff R a consecutive subset (Bloch–Karp).
Theorem (Boretsky–Eur–W)

Let R be a sequence of consecutive integers $(a, a+1, \ldots, b) \subset [n]$. Let

$$
\mu = (\mu^a, \mu^{a+1}, \ldots, \mu^b) \in \prod_{i=a}^{b}(\mathbb{R} \cup \{\infty\})^{[n]}.
$$

TFAE:

- μ lies in the nonnegative tropical flag variety $\text{Tr Fl}^{\geq 0}_{R; n}$; that is, μ obeys all positive tropical 3-term Plücker relations and incidence Plücker relations.

- Every face in the coherent subdivision of the polytope $P(\mu^a) + \cdots + P(\mu^b)$ is a flag positroid polytope.

Note: we do not know if the result holds for arbitrary sequences $R = (r_1 < \cdots < r_k) \subset [n]$.2

2One ingredient in proof is fact that the two notions of positivity for flag varieties (Plücker positivity vs Lusztig positivity) coincide iff R a consecutive subset (Bloch-Karp).
Theorem (Boretsky–Eur–W)

Let \(R \) be a sequence of consecutive integers \((a, a + 1, \ldots, b) \subset [n]\). Let \(\mu = (\mu^a, \mu^{a+1}, \ldots, \mu^b) \in \prod_{i=a}^{b} (\mathbb{R} \cup \{\infty\})^{[n]} \). TFAE:

- \(\mu \) lies in the nonnegative tropical flag variety \(\text{Tr Fl}_{R; n} \geq 0 \); that is, \(\mu \) obeys all positive tropical 3-term Plücker relations and incidence Plücker relations.

- Every face in the coherent subdivision of the polytope \(P(\mu^a) + \cdots + P(\mu^b) \) is a flag positroid polytope.

Note: we do not know if the result holds for arbitrary sequences \(R = (r_1 < \cdots < r_k) \subset [n] \).\(^2\)

\(^2\)One ingredient in proof is fact that the two notions of positivity for flag varieties (Plücker positivity vs Lusztig positivity) coincide iff \(R \) a consecutive subset (Bloch–Karp).
Theorem (Boretsky–Eur–W)

Let R be a sequence of consecutive integers $(a, a + 1, \ldots, b) \subset [n]$. Let
\[\mu = (\mu^a, \mu^{a+1}, \ldots, \mu^b) \in \prod_{i=a}^{b} (\mathbb{R} \cup \{\infty\})^{[n]} \].

TFAE:

- μ lies in the nonnegative tropical flag variety $\text{Tr Fl}_{\geq 0}^R$; that is, μ obeys all positive tropical 3-term Plücker relations and incidence Plücker relations.
- Every face in the coherent subdivision of the polytope $P(\mu^a) + \cdots + P(\mu^b)$ is a flag positroid polytope.

Note: we do not know if the result holds for arbitrary sequences $R = (r_1 < \cdots < r_k) \subset [n]$.\(^2\)

\(^2\)One ingredient in proof is fact that the two notions of positivity for flag varieties (Plücker positivity vs Lusztig positivity) coincide iff R a consecutive subset (Bloch-Karp).
Corollary (Boretsky-Eur-W)
A complete flag matroid polytope is a Bruhat interval polytope iff all its 1 and 2-dimensional faces are.

Corollary (Boretsky-Eur-W)
More generally, given a flag matroid $M = (M_a, M_{a+1}, \ldots, M_b)$ of consecutive ranks $a, a + 1, \ldots, b$, its flag matroid polytope $P(M)$ is a flag positroid polytope if and only if all its 1 and 2-dimensional faces are.
Applications of main result

Corollary (Boretsky-Eur-W)
A complete flag matroid polytope is a Bruhat interval polytope iff all its 1 and 2-dimensional faces are.

Corollary (Boretsky-Eur-W)
More generally, given a flag matroid \(\underline{M} = (M_a, M_{a+1}, \ldots, M_b) \) of consecutive ranks \(a, a+1, \ldots, b \), its flag matroid polytope \(P(\underline{M}) \) is a flag positroid polytope if and only if all its 1 and 2-dimensional faces are.
Corollary (Boretsky-Eur-W)

A complete flag matroid polytope is a Bruhat interval polytope iff all its 1 and 2-dimensional faces are.

Corollary (Boretsky-Eur-W)

More generally, given a flag matroid $\underline{M} = (M_a, M_{a+1}, \ldots, M_b)$ of consecutive ranks $a, a + 1, \ldots, b$, its flag matroid polytope $P(\underline{M})$ is a flag positroid polytope if and only if all its 1 and 2-dimensional faces are.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : \binom{[n]}{d} \to \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.” Related notions of oriented flag matroid, positively oriented (flag) matroid. Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)

Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)

Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an *oriented matroid* χ_M of rank d on $[n]$ is a map $\chi_M : ([n]_d) \rightarrow \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.” Related notions of oriented flag matroid, positively oriented (flag) matroid.

Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)

Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)

Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : \binom{[n]}{d} \to \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.”

Related notions of oriented flag matroid, positively oriented (flag) matroid.

Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)
Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it's an oriented flag matroid.

Corollary (Boretsky-Eur-W)
Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : \binom{[n]}{d} \to \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.”

Related notions of oriented flag matroid, positively oriented (flag) matroid.

Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)

Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)

Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : ([n]_d) \rightarrow \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.” Related notions of oriented flag matroid, positively oriented (flag) matroid. Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)

Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)

Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : \binom{[n]}{d} \to \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.” Related notions of oriented flag matroid, positively oriented (flag) matroid. Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)

Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)

Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : ([n]^d) \to \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.” Related notions of oriented flag matroid, positively oriented (flag) matroid.

Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)

Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)

Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : \binom{[n]}{d} \to \{-1,0,1\}$ which is “consistent w/ 3-term Plücker relations.” Related notions of oriented flag matroid, positively oriented (flag) matroid.

Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)

Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)

Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : \binom{[n]}{d} \to \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.” Related notions of oriented flag matroid, positively oriented (flag) matroid.

Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)
Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)
Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : \binom{[n]}{d} \to \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.” Related notions of oriented flag matroid, positively oriented (flag) matroid. Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)

Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)

Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.
Applications of main result

Recall: an oriented matroid χ_M of rank d on $[n]$ is a map $\chi_M : \binom{[n]}{d} \to \{-1, 0, 1\}$ which is “consistent w/ 3-term Plücker relations.”
Related notions of oriented flag matroid, positively oriented (flag) matroid.
Question: when does a sequence (M_1, \ldots, M_k) of positroids of ranks $r_1 < \cdots < r_k$ have a realization by one matrix?

Corollary (Boretsky-Eur-W)

Suppose that (M_a, \ldots, M_b) is a sequence of positroids of consecutive ranks. Then, when considered as a sequence of positively oriented matroids, (M_a, \ldots, M_b) is a flag positroid iff it’s an oriented flag matroid.

Corollary (Boretsky-Eur-W)

Every positively oriented flag matroid $(\chi_{M_1}, \ldots, \chi_{M_k})$ of consecutive ranks is realizable.

The above theorem generalizes a result of Ardila-Rincon-W.

“The full Kostant-Toda hierarchy on the positive flag variety” with Yuji Kodama, Comm Math Phys 2015.

Figure from Nadeau-Tewari 2208.04128 “Remixed Eulerian numbers”
Quick intro to tropical geometry

- Tropical varieties are “piecewise-linear” versions of ordinary varieties.
- Let $\mathcal{C} = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$ be the field of Puiseux series. Each element has the form $ct^a + \ldots$ where $c \in \mathbb{C} \setminus \{0\}$, $a \in \mathbb{Q}$, and the other terms have larger exponents.
- Define valuation $\text{val}(ct^a + \ldots) = a$.
- For $I \subset \mathcal{C}[x_1, \ldots, x_n]$ an ideal, the corresponding tropical variety is $\text{Trop} V(I) := \text{val}(V(I) \cap (\mathcal{C} \setminus \{0\})^n)$. That is, we compute the “ordinary” variety over the field of Puiseux series, but then apply the valuation to each coordinate.
- The positive Puiseux series \mathcal{C}^+ consists of $ct^a + \ldots$ where $c \in \mathbb{R}_{>0}$.
- The positive tropical variety is $\text{Trop}^+ V(I) := \text{val}(V(I) \cap (\mathcal{C}^+ \setminus \{0\})^n)$.
- Note: If $f(t), g(t) \in \mathcal{C}^+$, then $\text{val}(f(t)g(t)) = \text{val}(f(t) + g(t))$ and $\text{val}(f(t) + g(t)) = \min(\text{val}(f(t)), \text{val}(g(t)))$.
Thm (Lukowski-Parisi-W, Speyer-W, Arkani-Hamed-Lam-Spradlin)

Let $\mu = (\mu_I \mid I \in \binom{[n]}{r}) \in \mathbb{R}^{\binom{[n]}{r}}$. The following are equivalent.

- μ lies in the positive tropical Grassmannian $\text{Tr} \text{Gr}_{r,n}^>^0$ (the closure of the coordinate-wise valuation of $\text{Gr}_{r,n}$ over positive Puiseux series)
- μ obeys the positive tropical 3-term Plücker relations: for $i < j < k < \ell$ and S disjoint from them, $|S| = r - 2$,
 $$\mu_{Si} + \mu_{Sj\ell} = \min(\mu_{Sij} + \mu_{Sk\ell}, \mu_{Sil} + \mu_{Sjk}).$$
- Every face in the regular (coherent) subdivision of the hypersimplex $\Delta_{r,n} = \text{Conv}(e_I \mid I \in \binom{[n]}{r})$ induced by μ is a positroid polytope.

Example: $n = 4, r = 2, (\mu_I) \in \mathbb{R}^{\binom{[4]}{2}}$ such that

$$\mu_{13} + \mu_{24} = \mu_{23} + \mu_{14} < \mu_{12} + \mu_{34}.$$ Get:
The lifting property and a generalization

Lifting property: Suppose $u < v$ in Bruhat order and s is a simple reflection such that $vs < v$ and $us > u$. Then $u \leq vs < v$ and $u < us \leq v$.

Caution: such an s may not exist.

Def: Say a transposition (ij) is *inversion-minimal* on (u, v) if $[i, j]$ is minimal (with respect to inclusion) such that $v(ij) < v$ and $u(ij) > u$.

Theorem (T.W.) - Generalized lifting property

Suppose $u < v$ in Bruhat order on S_n. Choose a transposition (ij) which is inversion-minimal on (u, v); one always exists. Then $u \leq v(ij) < v$ and $u < u(ij) \leq v$.
The lifting property and a generalization

Lifting property: Suppose $u < v$ in Bruhat order and s is a simple reflection such that $vs < v$ and $us > u$. Then $u \leq vs < v$ and $u < us \leq v$.

Caution: *such an s may not exist.*

\[\begin{array}{c}
\text{v(ij)} \\
\downarrow \\
\text{u(ij)} \\
\end{array} \]

Def: Say a transposition (ij) is *inversion-minimal* on (u, v) if $[i, j]$ is minimal (with respect to inclusion) such that $v(ij) < v$ and $u(ij) > u$.

Theorem (T.W.) - Generalized lifting property

Suppose $u < v$ in Bruhat order on S_n. Choose a transposition (ij) which is inversion-minimal on (u, v); one always exists. Then $u \leq v(ij) < v$ and $u < u(ij) \leq v$.

Lauren K. Williams (Harvard)
Bruhat interval polytopes and their friends
2022 28 / 28
The lifting property and a generalization

Lifting property: Suppose \(u < v \) in Bruhat order and \(s \) is a simple reflection such that \(vs < v \) and \(us > u \). Then \(u \leq vs < v \) and \(u < us \leq v \).

Caution: such an \(s \) may not exist.

Def: Say a transposition \((ij)\) is *inversion-minimal* on \((u, v)\) if \([i, j]\) is minimal (with respect to inclusion) such that \(v(ij) < v\) and \(u(ij) > u\).

Theorem (T.W.) - Generalized lifting property

Suppose \(u < v \) in Bruhat order on \(S_n \). Choose a transposition \((ij)\) which is inversion-minimal on \((u, v)\); one always exists. Then \(u \leq v(ij) < v \) and \(u < u(ij) \leq v \).
Lifting property: Suppose \(u < v \) in Bruhat order and \(s \) is a simple reflection such that \(vs < v \) and \(us > u \). Then \(u \leq vs < v \) and \(u < us \leq v \).

Caution: such an \(s \) may not exist.

Def: Say a transposition \((ij)\) is *inversion-minimal* on \((u, v)\) if \([i, j]\) is minimal (with respect to inclusion) such that \(v(ij) < v \) and \(u(ij) > u \).

Theorem (T.W.) - Generalized lifting property

Suppose \(u < v \) in Bruhat order on \(S_n \). Choose a transposition \((ij)\) which is inversion-minimal on \((u, v)\); one always exists. Then \(u \leq v(ij) < v \) and \(u < u(ij) \leq v \).
Example of the Generalized lifting property

Theorem (T.W.) - Generalized lifting property

Suppose $u < v$ in the Bruhat order on S_n. Choose a transposition $t = (ij)$ which is inversion-minimal on (u, v); one always exists. Then $u \leq v(ij) \preccurlyeq v$ and $u \preccurlyeq u(ij) \leq v$.

Lauren K. Williams (Harvard)
Bruhat interval polytopes and their friends
2022 28 / 28
Example of the Generalized lifting property

Theorem (T.W.) - Generalized lifting property

Suppose $u < v$ in the Bruhat order on S_n. Choose a transposition $t = (ij)$ which is inversion-minimal on (u, v); one always exists. Then $u \leq v(ij) \preceq v$ and $u \preceq u(ij) \leq v$.

Let $u = 2143$, $v = 3241$, and $t = (24)(12)$.

```
  v = 3241
     /   \
   /     \
 t = (24)   (12)
     \
 3142   2341
     /   \
   /     \
 (14)   t = (24)
     \
 u = 2143
```
Generalization of the recurrence for R-polynomials $R_{u,v}(q)$

Kazhdan and Lusztig introduced R-polynomials as a tool for computing Kazhdan-Lusztig polynomials. Geometric interpretation: $R_{u,v}(q) = \# \mathcal{R}_{u,v}(\mathbb{F}_q)$, the number of \mathbb{F}_q-points in the Richardson variety.

They showed that R-polynomials can be defined by the conditions:

1. $R_{u,v}(q) = 0$, if $u \not\leq v$.
2. $R_{u,v}(q) = 1$, if $u = v$.
3. If $vs \leq v$ (s a simple reflection) then

$$R_{u,v}(q) = \begin{cases} R_{us, vs}(q) & \text{if } us \prec u, \\ qR_{us, vs}(q) + (q - 1)R_{u, vs}(q) & \text{if } us \succ u. \end{cases}$$

Theorem (T.W.)

Let $u, v \in S_n$ with $u \leq v$. Let $t = (ij)$ be inversion-minimal on (u, v). Then $R_{u,v}(q) = qR_{ut, vt}(q) + (q - 1)R_{u, vt}(q)$.

Lauren K. Williams (Harvard) Bruhat interval polytopes and their friends 2022 28 / 28
Generalization of the recurrence for R-polynomials $R_{u,v}(q)$

Kazhdan and Lusztig introduced R-polynomials as a tool for computing Kazhdan-Lusztig polynomials. Geometric interpretation:

$$R_{u,v}(q) = \# R_{u,v}(\mathbb{F}_q),$$ the number of \mathbb{F}_q-points in the Richardson variety.

They showed that R-polynomials can be defined by the conditions:

1. $R_{u,v}(q) = 0$, if $u \nleq v$.
2. $R_{u,v}(q) = 1$, if $u = v$.
3. If $vs \lhd v$ (s a simple reflection) then

$$R_{u,v}(q) = \begin{cases}
R_{us,vs}(q) & \text{if } us \lhd u, \\
qR_{us,vs}(q) + (q - 1)R_{u,vs}(q) & \text{if } us \triangleright u.
\end{cases}$$

Theorem (T.W.)

Let $u, v \in S_n$ with $u \leq v$. Let $t = (ij)$ be inversion-minimal on (u, v). Then

$$R_{u,v}(q) = qR_{ut,vt}(q) + (q - 1)R_{u,vt}(q).$$
Kazhdan and Lusztig introduced R-polynomials as a tool for computing Kazhdan-Lusztig polynomials. Geometric interpretation:

$$R_{u,v}(q) = \#R_{u,v}(\mathbb{F}_q),$$

the number of \mathbb{F}_q-points in the Richardson variety.

They showed that R-polynomials can be defined by the conditions:

1. $R_{u,v}(q) = 0$, if $u \not\leq v$.
2. $R_{u,v}(q) = 1$, if $u = v$.
3. If $vs < v$ (s a simple reflection) then

$$R_{u,v}(q) = \begin{cases} R_{us,vs}(q) & \text{if } us < u, \\ qR_{us,vs}(q) + (q-1)R_{u,vs}(q) & \text{if } us > u. \end{cases}$$

Theorem (T.W.)

Let $u, v \in S_n$ with $u \leq v$. Let $t = (ij)$ be inversion-minimal on (u, v). Then

$$R_{u,v}(q) = qR_{ut,vt}(q) + (q-1)R_{u,vt}(q).$$
Kazhdan and Lusztig introduced R-polynomials as a tool for computing Kazhdan-Lusztig polynomials. Geometric interpretation: $R_{u,v}(q) = \# \mathcal{R}_{u,v}(\mathbb{F}_q)$, the number of \mathbb{F}_q-points in the Richardson variety.

They showed that R-polynomials can be defined by the conditions:

1. $R_{u,v}(q) = 0$, if $u \nleq v$.
2. $R_{u,v}(q) = 1$, if $u = v$.
3. If $vs \nleq v$ (s a simple reflection) then

$$R_{u,v}(q) = \begin{cases} R_{us,vs}(q) & \text{if } us \nleq u, \\ qR_{us,vs}(q) + (q - 1)R_{u,vs}(q) & \text{if } us \not\leq u. \end{cases}$$

Theorem (T.W.)

Let $u, v \in S_n$ with $u \leq v$. Let $t = (ij)$ be inversion-minimal on (u, v). Then $R_{u,v}(q) = qR_{ut,vt}(q) + (q - 1)R_{u,vt}(q)$.

Lauren K. Williams (Harvard)
Bruhat interval polytopes and their friends
2022 28/28