Calcul de caractères d'algèbres de Lie avec les partitions d'entiers

Jehanne Dousse
(travail en commun avec Isaac Konan)

Université de Genève

Séminaire Flajolet
6 octobre 2022

Outline

(1) Basics on affine Lie algebras

(2) Character formulas

(3) Crystals and grounded partitions

4) Multi-grounded partitions

Lie algebras

Definition

A Lie algebra \mathfrak{g} is a vector space together with a bilinear map
$[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, called the Lie bracket, satisfying:

- alternativity : for all $x \in \mathfrak{g},[x, x]=0$,
- the Jacobi identity: for all $x, y, z \in \mathfrak{g}$, $[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0$.

Lie algebras

Definition

A Lie algebra \mathfrak{g} is a vector space together with a bilinear map
$[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, called the Lie bracket, satisfying:

- alternativity : for all $x \in \mathfrak{g},[x, x]=0$,
- the Jacobi identity: for all $x, y, z \in \mathfrak{g}$,

$$
[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0
$$

Example

The special linear Lie algebra of order n, denoted A_{n-1} or $\mathfrak{s l}_{n}(\mathbb{C})$, is the Lie algebra of $n \times n$ matrices with trace zero and with the Lie bracket $[X, Y]=X Y-Y X$.

Representations

Definition

A representation (or module) of \mathfrak{g} is a vector space V together with a linear map $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$, such that

$$
\rho([X, Y])=\rho(X) \rho(Y)-\rho(Y) \rho(X)
$$

By abuse of notation, V is often called a \mathfrak{g}-module and $\rho(X)(v)$ is often written $X \cdot v$.

Representations

Definition

A representation (or module) of \mathfrak{g} is a vector space V together with a linear map $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$, such that

$$
\rho([X, Y])=\rho(X) \rho(Y)-\rho(Y) \rho(X)
$$

By abuse of notation, V is often called a \mathfrak{g}-module and $\rho(X)(v)$ is often written $X \cdot v$.

Examples

- trivial representation $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ such that $\rho(X)=0$ for all $X \in \mathfrak{g}$,

Representations

Definition

A representation (or module) of \mathfrak{g} is a vector space V together with a linear map $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$, such that

$$
\rho([X, Y])=\rho(X) \rho(Y)-\rho(Y) \rho(X)
$$

By abuse of notation, V is often called a \mathfrak{g}-module and $\rho(X)(v)$ is often written $X \cdot v$.

Examples

- trivial representation $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ such that $\rho(X)=0$ for all $X \in \mathfrak{g}$,
- adjoint representation ad : $\mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$ such that $\operatorname{ad}(X)(Y)=[X, Y]$ for all $X, Y \in \mathfrak{g}$.

Semi-simple Lie algebras

Definition

Let \mathfrak{g} be a Lie algebra. A subspace $\mathfrak{h} \subset \mathfrak{g}$ is an ideal of \mathfrak{g} if

$$
\forall g \in \mathfrak{g}, \forall h \in \mathfrak{h},[g, h] \in \mathfrak{h} .
$$

Semi-simple Lie algebras

Definition

Let \mathfrak{g} be a Lie algebra. A subspace $\mathfrak{h} \subset \mathfrak{g}$ is an ideal of \mathfrak{g} if

$$
\forall g \in \mathfrak{g}, \forall h \in \mathfrak{h},[g, h] \in \mathfrak{h} .
$$

Definition

A Lie algebra \mathfrak{g} is said to be simple if it is non-abelian (i.e. there exist some $x, y \in \mathfrak{g}$ such that $[x, y] \neq 0$) and it does not have non-trivial ideals.

Semi-simple Lie algebras

Definition

Let \mathfrak{g} be a Lie algebra. A subspace $\mathfrak{h} \subset \mathfrak{g}$ is an ideal of \mathfrak{g} if

$$
\forall g \in \mathfrak{g}, \forall h \in \mathfrak{h},[g, h] \in \mathfrak{h} .
$$

Definition

A Lie algebra \mathfrak{g} is said to be simple if it is non-abelian (i.e. there exist some $x, y \in \mathfrak{g}$ such that $[x, y] \neq 0$) and it does not have non-trivial ideals.

Definition

A Lie algebra \mathfrak{g} is said to be semi-simple if it is a direct sum of simple Lie algebras.

Semi-simple Lie algebras can be described in terms of generators and relations.

Infinite dimensional Lie algebras

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra.
It is possible to define and affine Kac-Moody Lie algebra \mathfrak{g} corresponding to \mathfrak{g} as

$$
\hat{\mathfrak{g}}:=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} c
$$

where $\mathbb{C}\left[t, t^{-1}\right]$ is the complex vector space of Laurent polynomials in the indeterminate t, and $\mathbb{C} c$ is $\hat{\mathfrak{g}}$'s center (one-dimensional) which satisfies $[c, g]=0$ for all $g \in \mathfrak{g}$.

Infinite dimensional Lie algebras

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra.
It is possible to define and affine Kac-Moody Lie algebra \mathfrak{g} corresponding to \mathfrak{g} as

$$
\hat{\mathfrak{g}}:=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} c
$$

where $\mathbb{C}\left[t, t^{-1}\right]$ is the complex vector space of Laurent polynomials in the indeterminate t, and $\mathbb{C} c$ is $\hat{\mathfrak{g}}$'s center (one-dimensional) which satisfies $[c, g]=0$ for all $g \in \mathfrak{g}$.

Kac-Moody Lie algebras can also be described in terms of generators and relations.

Weights

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra with a Cartan subalgebra \mathfrak{h} (nilpotent subalgebra which is self-normalizing, i.e. if $\forall X \in \mathfrak{h},[X, Y] \in \mathfrak{h}$, then $Y \in \mathfrak{h})$.

Weights

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra with a Cartan subalgebra \mathfrak{h} (nilpotent subalgebra which is self-normalizing, i.e. if $\forall X \in \mathfrak{h},[X, Y] \in \mathfrak{h}$, then $Y \in \mathfrak{h})$.

Definition

Let V be a \mathfrak{g}-module and μ be a linear functional on \mathfrak{h}. The weight space of V with weight μ is $V_{\mu}:=\{v \in V: \forall H \in \mathfrak{h}, \quad H \cdot v=\mu(H) v\}$. A weight is a linear functional μ such that V_{μ} is non-zero. If V is a direct sum $V=\bigoplus_{\mu} V_{\mu}$ of its weight spaces, then it is called a weight module.

Weights

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra with a Cartan subalgebra \mathfrak{h} (nilpotent subalgebra which is self-normalizing, i.e. if $\forall X \in \mathfrak{h},[X, Y] \in \mathfrak{h}$, then $Y \in \mathfrak{h})$.

Definition

Let V be a \mathfrak{g}-module and μ be a linear functional on \mathfrak{h}. The weight space of V with weight μ is $V_{\mu}:=\{v \in V: \forall H \in \mathfrak{h}, \quad H \cdot v=\mu(H) v\}$. A weight is a linear functional μ such that V_{μ} is non-zero. If V is a direct sum $V=\bigoplus_{\mu} V_{\mu}$ of its weight spaces, then it is called a weight module.

The roots are weights for the adjoint representation.
A weight λ is higher than another weight μ if $\lambda-\mu$ can be written as a sum of positive roots, and λ is a highest weight if it is higher than any other weight in V.

Outline

(1) Basics on affine Lie algebras

(2) Character formulas

(3) Crystals and grounded partitions

4) Multi-grounded partitions

Characters

Definition

Let $L(\lambda)=\bigoplus_{\mu \in \mathfrak{h}^{*}} V_{\mu}$ be an irreducible highest weight module with highest weight λ. The character $\operatorname{ch} L(\lambda)$ of V is defined as

$$
\operatorname{ch} L(\lambda)=\sum_{\mu \in h^{*}} \operatorname{dim}\left(V_{\mu}\right) e^{\mu},
$$

where e^{μ} is a formal exponential satisfying $e^{\mu} e^{\mu^{\prime}}=e^{\mu+\mu^{\prime}}$.

Characters

Definition

Let $L(\lambda)=\bigoplus_{\mu \in \mathfrak{h}^{*}} V_{\mu}$ be an irreducible highest weight module with highest weight λ. The character $\operatorname{ch} L(\lambda)$ of V is defined as

$$
\operatorname{ch} L(\lambda)=\sum_{\mu \in \mathfrak{h}^{*}} \operatorname{dim}\left(V_{\mu}\right) e^{\mu},
$$

where e^{μ} is a formal exponential satisfying $e^{\mu} e^{\mu^{\prime}}=e^{\mu+\mu^{\prime}}$.
By definition of a highest weight,

$$
e^{-\lambda} \operatorname{ch} L(\lambda)=\sum_{\mu \in \mathfrak{h}^{*}} \operatorname{dim}\left(V_{\mu}\right) e^{\mu-\lambda}
$$

is a series with positive coefficients in $\mathbb{Z}\left[\left[e^{-\alpha_{0}}, \ldots, e^{-\alpha_{n}}\right]\right]$, where $\alpha_{0}, \ldots, \alpha_{n}$ are the simple roots.

Character formulas

Theorem (Weyl-Kac character formula)

$$
\operatorname{ch}(L(\lambda))=\frac{\sum_{w \in W^{2}} \operatorname{sgn}(w) e^{w(\lambda+\rho)-\rho}}{\prod_{\alpha \in \Delta^{+}}\left(1-e^{-\alpha}\right)^{\operatorname{dimg}} \mathfrak{g}_{\alpha}}
$$

where W is the Weyl group of \mathfrak{g}, Δ^{+}the set of positive roots of $\mathfrak{g}, \operatorname{sgn}(w)$ the signature of $w, \rho \in \mathfrak{h}^{*}$ the Weyl vector, and \mathfrak{g}_{α} the α root space of \mathfrak{g}.

Character formulas

Theorem (Weyl-Kac character formula)

$$
\operatorname{ch}(L(\lambda))=\frac{\sum_{w \in W^{2}} \operatorname{sgn}(w) e^{w(\lambda+\rho)-\rho}}{\prod_{\alpha \in \Delta^{+}}\left(1-e^{-\alpha}\right)^{\operatorname{dim}} \mathfrak{g}_{\alpha}}
$$

where W is the Weyl group of \mathfrak{g}, Δ^{+}the set of positive roots of $\mathfrak{g}, \operatorname{sgn}(w)$ the signature of $w, \rho \in \mathfrak{h}^{*}$ the Weyl vector, and \mathfrak{g}_{α} the α root space of \mathfrak{g}.

Beautiful formula but does not exhibit the positivity of the coefficients.

Character formulas

Theorem (Weyl-Kac character formula)

$$
\operatorname{ch}(L(\lambda))=\frac{\sum_{w \in W^{2}} \operatorname{sgn}(w) e^{w(\lambda+\rho)-\rho}}{\prod_{\alpha \in \Delta^{+}}\left(1-e^{-\alpha}\right)^{\operatorname{dimg}} \mathfrak{g}_{\alpha}}
$$

where W is the Weyl group of \mathfrak{g}, Δ^{+}the set of positive roots of $\mathfrak{g}, \operatorname{sgn}(w)$ the signature of $w, \rho \in \mathfrak{h}^{*}$ the Weyl vector, and \mathfrak{g}_{α} the α root space of \mathfrak{g}.

Beautiful formula but does not exhibit the positivity of the coefficients. Principal specialisation ($e^{-\alpha_{i}} \mapsto q$ for all i) gives an infinite product.

Example: $A_{1}^{(1)}$ at level 3 (Lepowsky-Wilson)

$$
e^{-\Lambda_{0}+2 \Lambda_{1}} \operatorname{ch} L\left(\Lambda_{0}+2 \Lambda_{1}\right)=\frac{(-q ; q)_{\infty}}{\left(q, q^{4} ; q^{5}\right)_{\infty}}, e^{-3 \Lambda_{1}} \operatorname{ch} L\left(3 \Lambda_{1}\right)=\frac{(-q ; q)_{\infty}}{\left(q^{2}, q^{3} ; q^{5}\right)_{\infty}}
$$

where $(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right)$ and $(a, b ; q)_{n}=(a ; q)_{n}(b ; q)_{n}$.

Digression: The Rogers-Ramanujan identities

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of positive integers $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ such that $\lambda_{1}+\cdots+\lambda_{m}=n$. The integers $\lambda_{1}, \ldots, \lambda_{m}$ are called the parts of the partition λ.

Example

There are 5 partitions of $4: 4,(3,1),(2,2),(2,1,1)$ and $(1,1,1,1)$.

Digression: The Rogers-Ramanujan identities

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of positive integers $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ such that $\lambda_{1}+\cdots+\lambda_{m}=n$. The integers $\lambda_{1}, \ldots, \lambda_{m}$ are called the parts of the partition λ.

Example

There are 5 partitions of $4: 4,(3,1),(2,2),(2,1,1)$ and $(1,1,1,1)$.

- The generating function for partitions into distinct parts congruent to $k \bmod N$ is

$$
\left(-z q^{k} ; q^{N}\right)_{\infty}
$$

- The generating function for partitions into parts congruent to k $\bmod N$ is

$$
\frac{1}{\left(z q^{k} ; q^{N}\right)_{\infty}}
$$

Digression: The Rogers-Ramanujan identities

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of positive integers $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ such that $\lambda_{1}+\cdots+\lambda_{m}=n$. The integers $\lambda_{1}, \ldots, \lambda_{m}$ are called the parts of the partition λ.

Example

There are 5 partitions of $4: 4,(3,1),(2,2),(2,1,1)$ and $(1,1,1,1)$.
Theorem (Rogers 1894, Rogers-Ramanujan 1919)

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

For every positive integer n, the number of partitions of n such that the difference between two consecutive parts is at least 2 is equal to the number of partitions of n into parts congruent to 1 or 4 modulo 5 .

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

$$
(-q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=(-q ; q)_{\infty} \frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

Obtained by giving two different formulations for the principal specialisation

$$
e^{-\alpha_{0}} \mapsto q, \quad e^{-\alpha_{1}} \mapsto q
$$

of $e^{-\Lambda_{0}+2 \Lambda_{1}} \operatorname{ch} L\left(\Lambda_{0}+2 \Lambda_{1}\right)$, where $L\left(\Lambda_{0}+2 \Lambda_{1}\right)$ is an irreducible highest weight $A_{1}^{(1)}$-module of level 3 with highest weight $\Lambda_{0}+2 \Lambda_{1}$, and α_{0}, α_{1} are the simple roots.

RHS: principal specialisation of the Weyl-Kac character formula
LHS: comes from the construction of a basis of $L\left(\Lambda_{0}+2 \Lambda_{1}\right)$ using vertex operators

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

$$
(-q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=(-q ; q)_{\infty} \frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

LHS: comes from the construction of a basis of $L\left(\Lambda_{0}+2 \Lambda_{1}\right)$ using vertex operators.
Very rough idea:

- Start with a spanning set of $L\left(\Lambda_{0}+2 \Lambda_{1}\right)$: here, monomials of the form $Z_{1}^{f_{1}} \ldots Z_{s}^{f_{s}}$ for $s, f_{1}, \ldots, f_{s} \in \mathbb{N}_{\geq 0}$.
- Using Lie theory, reduce this spanning set: here, it allows one to remove all monomials containing Z_{j}^{2} or $Z_{j} Z_{j+1}$.
- Show that the obtained set is a basis of the representation (difficult).

Partition identities and characters

With Lepowsky and Wilson's approach (vertex operators + Weyl-Kac): discovery of many new partition identities yet unknown to combinatorialists

- Meurman-Primc 1987: higher levels of $A_{1}^{(1)}$
- Capparelli 1993: level 3 standard modules of $A_{2}^{(2)}$
- Siladić 2002: twisted level 1 modules of $A_{2}^{(2)}$
- Nandi 2014: level 4 standard modules of $A_{2}^{(2)}$
- Primc and Šikić 2016: level k standard modules of $C_{n}^{(1)}$

But often these identities are only conjectured, not proved, through this method. On the other hand, if a combinatorial proof is found, it also implies equality of characters.

Back to characters

The character

$$
e^{-\lambda} \operatorname{ch} L(\lambda)=\sum_{\mu \in \mathfrak{h}^{*}} \operatorname{dim}\left(V_{\mu}\right) e^{\mu-\lambda}
$$

is a series with positive coefficients in $\mathbb{Z}\left[\left[e^{-\alpha_{0}}, \ldots, e^{-\alpha_{n}}\right]\right]$
Combinatorics can help finding explicit expressions of that shape:

- Andrews-Schilling-Warnaar 1999
- Bartlett-Warnaar 2015
- Crystal bases (KMN² 1992, Primc 1998, D.-Konan 2021)

Outline

(1) Basics on affine Lie algebras

(2) Character formulas

(3) Crystals and grounded partitions

4 Multi-grounded partitions

Crystals: "combinatorial representations" of Lie algebras Crystal for the vector representation of the affine Lie algebra $A_{n-1}^{(1)}$:

$$
\mathcal{B}:
$$

If $b_{1} \xrightarrow{i} b_{2}$, we write $\tilde{f}_{i} b_{1}=b_{2}$, or equivalently $b_{1}=\tilde{e}_{i} b_{2}$.
Let $\varphi_{i}(b)$ (resp. $\left.\varepsilon_{i}(b)\right)$ denote the length of the maximal chain of i-arrows coming out of (resp. arriving in) b.

The dual of \mathcal{B} :

We have $\tilde{f}_{i} b_{1}=b_{2}$ in \mathcal{B} if and only if $\tilde{e}_{i} b_{1}^{\vee}=b_{2}^{\vee}$.

Crystals: "combinatorial representations" of Lie algebras

If \mathcal{B}_{1} is a crystal for the representation M_{1} and \mathcal{B}_{2} is a crystal for the representation M_{2}, then we can define a crystal $\mathcal{B}_{1} \otimes \mathcal{B}_{2}$ with the following arrows:
and $\mathcal{B}_{1} \otimes \mathcal{B}_{2}$ is a crystal for $M_{1} \otimes M_{2}$.

Example: $A_{1}^{(1)}$ at level 1

$$
\tilde{f}_{i}\left(b_{1} \otimes b_{2}\right)=\left\{\begin{array}{lll}
\tilde{f}_{i} b_{1} \otimes b_{2} & \text { if } & \varphi_{i}\left(b_{1}\right)>\varepsilon_{i}\left(b_{2}\right), \\
b_{1} \otimes \tilde{f}_{i} b_{2} & \text { if } & \varphi_{i}\left(b_{1}\right) \leq \varepsilon_{i}\left(b_{2}\right),
\end{array}\right.
$$

Energy functions

Definition

An energy function on $\mathcal{B} \otimes \mathcal{B}$ is a map $H: \mathcal{B} \otimes \mathcal{B} \rightarrow \mathbb{Z}$ satisfying for all i,

$$
H\left(\tilde{e}_{i}\left(b_{1} \otimes b_{2}\right)\right)= \begin{cases}H\left(b_{1} \otimes b_{2}\right) & \text { if } i \neq 0, \\ H\left(b_{1} \otimes b_{2}\right)+1 & \text { if } i=0 \text { and } \varphi_{0}\left(b_{1}\right) \geq \varepsilon_{0}\left(b_{2}\right) \\ H\left(b_{1} \otimes b_{2}\right)-1 & \text { if } i=0 \text { and } \varphi_{0}\left(b_{1}\right)<\varepsilon_{0}\left(b_{2}\right) .\end{cases}
$$

By definition, the value of $H\left(b_{1} \otimes b_{2}\right)$ determines the values $H\left(b_{1}^{\prime} \otimes b_{2}^{\prime}\right)$ of all the vertices $b_{1}^{\prime} \otimes b_{2}^{\prime}$ which are in the same connected component as $b_{1} \otimes b_{2}$.

The (KMN) ${ }^{2}$ crystal base character formula (1992)

To each dominant weight λ, one can associate a ground state path

$$
\mathfrak{p}_{\lambda}=\left(g_{k}\right)_{k=0}^{\infty}=\cdots \otimes g_{k+1} \otimes g_{k} \otimes \cdots \otimes g_{1} \otimes g_{0}
$$

where $g_{i} \in \mathcal{B}$ for all i.
A tensor product $\mathfrak{p}=\left(p_{k}\right)_{k=0}^{\infty}=\cdots \otimes p_{k+1} \otimes p_{k} \otimes \cdots \otimes p_{1} \otimes p_{0}$ of elements $p_{k} \in \mathcal{B}$ is said to be a λ-path if $p_{k}=g_{k}$ for k large enough. Let $\mathcal{P}(\lambda)$ denote the set of λ-paths .

Theorem (Kang-Kashiwara-Misra-Miwa-Nakashima-Nakayashiki)
Let $L(\lambda)$ be an irreducible highest weight module of weight λ. We have

$$
\operatorname{ch}(L(\lambda))=\sum_{\mathfrak{p} \in \mathcal{P}(\lambda)} e^{\mathrm{wtp}}
$$

where $w t p$ is defined in terms of the energy function and the simple roots.

Example: Primc's identity on $A_{1}^{(1)}$ at level 1

Example: Primc's identity on $A_{1}^{(1)}$ at level 1

$$
\begin{aligned}
& 0 \otimes 1 \longleftrightarrow a, \\
& 0 \otimes 0 \longleftrightarrow b, \\
& 1 \otimes 1 \longleftrightarrow c \\
& 1 \otimes 0 \longleftrightarrow d
\end{aligned}
$$

Primc's identity

Let P be the energy function in $\left(\mathcal{B} \otimes \mathcal{B}^{\vee}\right) \otimes\left(\mathcal{B} \otimes \mathcal{B}^{\vee}\right)$ for $A_{1}^{(1)}$. Partitions in four colours a, b, c, d, with the order

$$
1_{a}<1_{b}<1_{c}<1_{d}<2_{a}<2_{b}<2_{c}<2_{d}<\cdots
$$

and difference conditions

$$
P=\begin{gathered}
a \\
a \\
b \\
c \\
d
\end{gathered}\left(\begin{array}{llll}
a & b & c & d \\
1 & 1 & 2 & 2 \\
0 & 1 & 1 \\
0 & 1 & 0 & 2 \\
0 & 1 & 0 & 2
\end{array}\right) .
$$

Primc (1998) conjectured that after performing the dilations

$$
k_{a} \rightarrow 2 k-1, k_{b} \rightarrow 2 k, k_{c} \rightarrow 2 k, k_{d} \rightarrow 2 k+1
$$

the generating function for these partitions (not keeping track of the colours) becomes $\frac{1}{(q ; q)_{\infty}}$.

Refinement of Primc's identity

Theorem (D.-Lovejoy 2017)

Let $P(n ; k, \ell, m)$ denote the number of partitions satisfying the difference conditions of matrix P, with k parts coloured a, ℓ parts coloured c and m parts coloured d. Then

$$
\sum_{n, k, \ell, m \geq 0} P(n ; k, \ell, m) q^{n} a^{k} c^{\ell} d^{m}=\frac{\left(-a q ; q^{2}\right)_{\infty}\left(-d q ; q^{2}\right)_{\infty}}{(q ; q)_{\infty}\left(c q ; q^{2}\right)_{\infty}} .
$$

Proved via a variant of the method of weighted words (D. 2016) using q-difference equations, not at all related to crystals.

Another identity of Primc

Studying crystal bases of $A_{2}^{(1)}$, Primc proved that, after performing certain dilations (corresponding to the principal specialisation), the generating function for coloured partitions satisfying the difference conditions
$a_{2} b_{0}$
$a_{2} b_{1}$
$a_{1} b_{0}$
$a_{0} b_{0}$
$a_{2} b_{2}$
$a_{1} b_{1}$
$a_{0} b_{1}$
$a_{1} b_{2}$
$a_{0} b_{2}$$\left(\begin{array}{ccccccccc}a_{2} b_{0} & a_{2} b_{1} & a_{1} b_{0} & a_{0} b_{0} & a_{2} b_{2} & a_{1} b_{1} & a_{0} b_{1} & a_{1} b_{2} & a_{0} b_{2} \\ 2 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 1 & 1 & 2 & 1 & 2 & 2 & 2 \\ 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 & 1 & 0 & 2 & 1 & 2 \\ 0 & 1 & 0 & 1 & 1 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 & 2\end{array}\right)$
becomes

$$
\frac{1}{(q ; q)_{\infty}}
$$

The starting point of our work

We wanted to generalise (purely combinatorially) Primc's two identities to obtain an infinite family of partition identities with n^{2} colours.

The starting point of our work

We wanted to generalise (purely combinatorially) Primc's two identities to obtain an infinite family of partition identities with n^{2} colours.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be two sequences of symbols. We use them to define the set of colours: $\left\{a_{i} b_{k}: i, k \in \mathbb{N}\right\}$.

Definition

For all $i, k, i^{\prime}, k^{\prime} \in \mathbb{N}$, we define the minimal difference Δ between a part coloured $a_{i} b_{k}$ and a part coloured $a_{i^{\prime}} b_{k^{\prime}}$ in the following way:

$$
\Delta\left(a_{i} b_{k}, a_{i^{\prime}} b_{k^{\prime}}\right)=\chi\left(i \geq i^{\prime}\right)-\chi\left(i=k=i^{\prime}\right)+\chi\left(k \leq k^{\prime}\right)-\chi\left(k=i^{\prime}=k^{\prime}\right)
$$

where χ (prop) equals 1 if prop is true and 0 otherwise.
For every positive integer n, let \mathcal{P}_{n} denote the set of partitions with colours $\left\{a_{i} b_{k}: 0 \leq i, k \leq n-1\right\}$, satisfying the difference conditions Δ.

Generalisation of Primc's identity

Set for all $i, a_{i}=b_{i}^{-1}$.
Let $P_{n}\left(m ; u_{0}, \ldots, u_{n-1} ; v_{0}, \ldots, v_{n-1}\right)$ denote the number of n^{2}-coloured of m which belong to \mathcal{P}_{n}, where for $i \in\{0, \ldots, n-1\}$, the symbol a_{i} (resp. b_{i}) appears u_{i} (resp. v_{i}) times in its colour sequence.

Theorem (D.-Konan (2019))
For every positive integer n, we have

$$
\begin{aligned}
& \quad \sum_{m, u_{0}, \ldots, u_{n-1}, v_{0}, \ldots, v_{n-1} \geq 0} P_{n}\left(m ; u_{0}, \ldots, u_{n-1} ; v_{0}, \ldots, v_{n-1}\right) q^{m} b_{0}^{v_{0}-u_{0}} \cdots b_{n-1}^{v_{n-1}-u_{n-1}} \\
& =\left[x^{0}\right] \prod_{i=0}^{n-1}\left(-b_{i}^{-1} x q ; q\right)_{\infty}\left(-b_{i} x^{-1} ; q\right)_{\infty}
\end{aligned}
$$

Principal specialisation

In his paper, Primc used the principal specialisation:

$$
\left\{\begin{array}{rll}
q & \mapsto & q^{n} \\
b_{i} & \mapsto & q^{i}
\end{array} \text { for all } i \in\{0, \ldots, n-1\}\right.
$$

Corollary (D.-Konan (2019))

Let n be a positive integer. By doing the dilations above, the generating function for the coloured partitions in \mathcal{P}_{n} becomes:

$$
\begin{aligned}
{\left[x^{0}\right] \prod_{i=0}^{n-1}\left(-q^{n-i} x ; q^{n}\right)_{\infty}\left(-q^{i} x^{-1} ; q^{n}\right)_{\infty} } & =\left[x^{0}\right](-q x ; q)_{\infty}\left(-x^{-1} ; q\right)_{\infty} \\
& =\frac{1}{(q ; q)_{\infty}}
\end{aligned}
$$

The cases $n=2$ and $n=3$ recover Primc's original results.

Connection with energy functions

The difference conditions for Primc's identities were energy functions for crystals of $A_{1}^{(1)}$ and $A_{2}^{(1)}$, respectively. Are our generalised difference conditions also energy functions?

Connection with energy functions

The difference conditions for Primc's identities were energy functions for crystals of $A_{1}^{(1)}$ and $A_{2}^{(1)}$, respectively. Are our generalised difference conditions also energy functions?

Theorem (D.-Konan 2019)

Let n be a positive integer, and let $\mathcal{B}=\left\{v_{i}: i \in\{0, \cdots, n-1\}\right\}$ denote the crystal of the vector representation of $A_{n-1}^{(1)}$. The crystal $\mathbb{B}=\mathcal{B} \otimes \mathcal{B}^{\vee}$ is a perfect crystal of level 1 whose energy function such that $H\left(\left(v_{0} \otimes v_{0}^{\vee}\right) \otimes\left(v_{0} \otimes v_{0}^{\vee}\right)\right)=0$ satisfies for all $k, \ell, k^{\prime}, \ell^{\prime} \in\{0, \ldots, n-1\}$,

$$
H\left(\left(v_{\ell^{\prime}} \otimes v_{k^{\prime}}^{\vee}\right) \otimes\left(v_{\ell} \otimes v_{k}^{\vee}\right)\right)=\Delta\left(a_{k} b_{\ell} ; a_{k^{\prime}} b_{\ell^{\prime}}\right)
$$

where Δ is our generalised difference condition.

Back to character formulas

Reminder: $(\mathrm{KMN})^{2}$ character formula
Let $L(\lambda)$ be an irreducible highest weight module of weight λ. We have

$$
\operatorname{ch}(L(\lambda))=\sum_{\mathfrak{p} \in \mathcal{P}(\lambda)} e^{\mathrm{wtp}}
$$

where $\mathcal{P}(\lambda)$ is the set of λ-paths.

Back to character formulas

Reminder: $(\mathrm{KMN})^{2}$ character formula

Let $L(\lambda)$ be an irreducible highest weight module of weight λ. We have

$$
\operatorname{ch}(L(\lambda))=\sum_{\mathfrak{p} \in \mathcal{P}(\lambda)} e^{\mathrm{wtp}}
$$

where $\mathcal{P}(\lambda)$ is the set of λ-paths.
In $A_{n-1}^{(1)}$, the fundamental weights are $\Lambda_{0}, \ldots, \Lambda_{n-1}$. With respect to the crystal $\mathcal{B} \otimes \mathcal{B}^{\vee}$, they all have constant ground state paths.

Back to character formulas

Reminder: $(\mathrm{KMN})^{2}$ character formula

Let $L(\lambda)$ be an irreducible highest weight module of weight λ. We have

$$
\operatorname{ch}(L(\lambda))=\sum_{\mathfrak{p} \in \mathcal{P}(\lambda)} e^{\mathrm{wtp}}
$$

where $\mathcal{P}(\lambda)$ is the set of λ-paths.
In $A_{n-1}^{(1)}$, the fundamental weights are $\Lambda_{0}, \ldots, \Lambda_{n-1}$. With respect to the crystal $\mathcal{B} \otimes \mathcal{B}^{\vee}$, they all have constant ground state paths.

Goal: relate λ-paths to coloured partitions to translate our partition identities into character formulas for $A_{n-1}^{(1)}$.

Grounded partitions

Definition

Let \mathcal{C} be a set of colours and $c_{g} \in \mathcal{C}$. Let \succ be a binary relation defined on the coloured integers $\mathbb{Z}_{\mathcal{C}}=\left\{k_{c}: k \in \mathbb{Z}, c \in \mathcal{C}\right\}$.
A grounded partition with ground c_{g} and relation \succ is a finite sequence $\left(\pi_{0}, \ldots, \pi_{s}\right)$ of coloured integers, such that

- for all $i \in\{0, \ldots, s-1\}, \pi_{i} \succ \pi_{i+1}$,
- $\pi_{s}=0_{c_{g}}$,
- $\pi_{s-1} \neq 0_{c_{g}}$.

Let $\mathcal{P}_{\mathrm{C}_{g}}^{\succ}$ denote the set of such partitions.

Example

Let $\mathcal{C}=c_{1}, c_{2}, c_{3}$, and for all $k \in \mathbb{Z}, c, c^{\prime} \in \mathcal{C}, k_{c} \succ k_{c^{\prime}}^{\prime} \Leftrightarrow k=k^{\prime}+1$.
The sequence $\left(4_{c_{1}}, 3_{c_{3}}, 2_{c_{2}}, 1_{c_{2}}, 0_{c_{1}}\right)$ is a grounded partition with ground c_{1} and relation \succ.

Connection with ground state paths

Let \mathcal{B} a perfect crystal and λ be a highest weight such that the corresponding ground state path is constant $\mathfrak{p}_{\lambda}=\cdots \otimes g \otimes g \otimes g$. Let H be an energy function on $\mathcal{B} \otimes \mathcal{B}$ such that $H(g \otimes g)=0$. Let $\mathcal{C}_{\mathcal{B}}=\left\{c_{b}: b \in \mathcal{B}\right\}$ be the set of colours indexed by the vertices of \mathcal{B}. We define the binary relations $>$ and \gg on $\mathbb{Z}_{\mathcal{C}_{\mathcal{B}}}$ by

$$
\begin{aligned}
& k_{c_{b}} \gtrdot k_{c_{b^{\prime}}}^{\prime} \text { if and only if } k-k^{\prime}=H\left(b^{\prime} \otimes b\right), \\
& k_{c_{b}} \gg k_{c_{b^{\prime}}}^{\prime} \text { if and only if } k-k^{\prime} \geq H\left(b^{\prime} \otimes b\right)
\end{aligned}
$$

Connection with ground state paths

Let \mathcal{B} a perfect crystal and λ be a highest weight such that the corresponding ground state path is constant $\mathfrak{p}_{\lambda}=\cdots \otimes g \otimes g \otimes g$. Let H be an energy function on $\mathcal{B} \otimes \mathcal{B}$ such that $H(g \otimes g)=0$. Let $\mathcal{C}_{\mathcal{B}}=\left\{c_{b}: b \in \mathcal{B}\right\}$ be the set of colours indexed by the vertices of \mathcal{B}. We define the binary relations $>$ and \gg on $\mathbb{Z}_{\mathcal{C}_{\mathcal{B}}}$ by

$$
\begin{aligned}
& k_{c_{b}} \gtrdot k_{c_{b^{\prime}}^{\prime}}^{\prime} \text { if and only if } k-k^{\prime}=H\left(b^{\prime} \otimes b\right), \\
& k_{c_{b}} \gg k_{c_{b^{\prime}}^{\prime}}^{\prime} \text { if and only if } k-k^{\prime} \geq H\left(b^{\prime} \otimes b\right)
\end{aligned}
$$

Theorem (D.-Konan 2019)
The set of λ-paths is in bijection with the set of grounded partitions $\mathcal{P}_{c_{g}}^{>}$.

Theorem (D.-Konan 2019)

There is a bijection between $\mathcal{P}_{c_{g}}^{\gg}$ and $\mathcal{P}_{c_{g}}^{>} \times \mathcal{P}_{c_{g}}$, where $\mathcal{P}_{c_{g}}$ is the set of coloured partitions where all parts have colour c_{g}.

New combinatorial character formula

Theorem (D.-Konan 2019)

Let $L(\lambda)$ be an irreducible highest weight module of weight λ with constant ground state path. Denoting by $C(\pi)$ the colour sequence of π and setting $q=e^{-\delta / d_{0}}$ and $c_{b}=e^{\mathrm{wt} b}$ for all $b \in \mathcal{B}$, we have

$$
\begin{aligned}
& \sum_{\pi \in \mathcal{P}_{c_{g}}^{>}} C(\pi) q^{|\pi|}=e^{-\lambda} \operatorname{ch}(L(\lambda)) \\
& \sum_{\pi \in \mathcal{P}_{c_{g}}^{>}} C(\pi) q^{|\pi|}=\frac{e^{-\lambda} \operatorname{ch}(L(\lambda))}{(q ; q)_{\infty}}
\end{aligned}
$$

Non-specialised character formula for $A_{n-1}^{(1)}$
Combining our new character formula with our generalisation of Primc's identity, we obtain:

Theorem (D.-Konan 2019)

Let n be a positive integer, and let $\Lambda_{0}, \ldots, \Lambda_{n-1}$ be the fundamental weights of $A_{n-1}^{(1)}$. By setting $e^{\mathrm{wtv}} v_{i}=b_{i}$ and $e^{-\delta}=q$, we have:

$$
\begin{aligned}
\frac{e^{-\Lambda_{\ell}} \operatorname{ch}\left(L\left(\Lambda_{\ell}\right)\right)}{(q ; q)_{\infty}}=\left[x^{0}\right](& \prod_{i=0}^{\ell-1}\left(-b_{i}^{-1} x ; q\right)_{\infty}\left(-b_{i} x^{-1} q ; q\right)_{\infty} \\
& \left.\times \prod_{i=\ell}^{n-1}\left(-b_{i}^{-1} x q ; q\right)_{\infty}\left(-b_{i} x^{-1} ; q\right)_{\infty}\right)
\end{aligned}
$$

This allows us to recover a character formula of Kac-Peterson (1984) and a new expression as a sum of infinite products with obviously positive coefficients.

Non-specialised character formula for $A_{n-1}^{(1)}$

Combining our new character formula with our generalisation of Primc's identity, we obtain:

Theorem (D.-Konan 2019)

Let $\Lambda_{0}, \ldots, \Lambda_{n-1}$ be the fundamental weights of $A_{n-1}^{(1)}$. For all $\ell \in\{0, \ldots, n-1\}$, we have

$$
\begin{aligned}
e^{-\Lambda_{\ell}} \operatorname{ch}\left(L\left(\Lambda_{\ell}\right)\right)=\left(\prod_{i=1}^{n-1}\right. & \left.\frac{\left(e^{-i(i+1) \delta} ; e^{-i(i+1) \delta}\right)_{\infty}}{\left(e^{-\delta} ; e^{-\delta}\right)_{\infty}}\right) \sum_{\substack{r_{1}, \ldots, r_{n}=1 \\
r_{0}=r_{n}=0 \\
0 \leq r_{j} \leq j-1}} e^{-r_{l} \delta} \prod_{i=1}^{n-1} e^{r_{i} \alpha_{i}} e^{r_{i}\left(r_{i+1}-r_{i}\right) \delta} \\
& \times\left(-e^{\left(i r_{i+1}-(i+1) r_{i}-\frac{i(i+1)}{2}-\ell \chi(i \geq 1>0)\right) \delta+\sum_{j=1}^{i} j \alpha_{j}} ; e^{-i(i+1) \delta}\right)_{\infty} \\
& \times\left(-e^{\left((i+1) r_{i}-i r_{i+1}-\frac{i(i+1)}{2}+\ell \chi(i \geq 1>0)\right) \delta-\sum_{j=1}^{i} j \alpha_{j}} ; e^{-i(i+1) \delta}\right)_{\infty}
\end{aligned}
$$

Outline

(1) Basics on affine Lie algebras

(2) Character formulas

(3) Crystals and grounded partitions

4 Multi-grounded partitions

Multi-grounded partitions

Goal: extend the idea of grounded partitions to treat the cases of crystals where the ground state paths are not constant.

Multi-grounded partitions

Goal: extend the idea of grounded partitions to treat the cases of crystals where the ground state paths are not constant.

Definition

Let \mathcal{C} be a set of colors and \succ a binary relation defined on $\mathbb{Z}_{\mathcal{C}}$. Suppose that there exist some colors $c_{g_{0}}, \ldots, c_{g_{t-1}}$ in \mathcal{C} and unique coloured integers $u_{c_{g_{0}}}^{(0)}, \ldots, u_{g_{g_{t-1}}}^{(t-1)}$ such that

$$
\begin{aligned}
& u^{(0)}+\cdots+u^{(t-1)}=0, \\
& u_{c_{g_{0}}}^{(0)} \succ u_{c_{g_{1}}}^{(1)} \succ \cdots \succ u_{c_{g_{t-1}}}^{(t-1)} \succ u_{c_{g_{0}}}^{(0)} .
\end{aligned}
$$

Then a multi-grounded partition with ground $c_{g_{0}}, \ldots, c_{g_{t-1}}$ and relation \succ is a finite sequence $\pi=\left(\pi_{0}, \cdots, \pi_{s-1}, u_{c_{g_{0}}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)}\right)$ of coloured integers such that $\pi_{i} \succ \pi_{i+1}$ for all i, and $\left(\pi_{s-t}, \cdots, \pi_{s-1}\right) \neq\left(u_{c_{g_{0}}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)}\right)$ in terms of coloured integers. The set of these multi-grounded partitions is denoted by $\mathcal{P}_{\mathrm{C}_{g_{0}} \cdots c_{g_{t-1}}}^{\succ}$.

Example

Take $\mathcal{C}=\left\{c_{1}, c_{2}, c_{3}\right\}$,

$$
M=\left(\begin{array}{ccc}
2 & 2 & 2 \\
0 & 0 & 2 \\
-2 & 0 & 2
\end{array}\right)
$$

and define the relation \succ on $\mathbb{Z}_{\mathcal{C}}$ by $k_{c_{b}} \succ k_{c_{b^{\prime}}}^{\prime}$ if and only if $k-k^{\prime} \geq M_{b, b^{\prime}}$. If we choose $\left(g_{0}, g_{1}\right)=(1,3)$, the pair $\left(u^{(0)}, u^{(1)}\right)=(1,-1)$ is the unique pair satisfying the conditions

$$
\begin{aligned}
& u^{(0)}+u^{(1)}=0, \\
& u_{c_{1}}^{(0)} \succ u_{c_{3}}^{(1)} \succ u_{c_{1}}^{(0)} .
\end{aligned}
$$

The sequences $\left(3_{c_{3}}, 3_{c_{2}}, 3_{c_{1}},-1_{c_{3}}, 1_{c_{1}},-1_{c_{3}}\right)$ and $\left(1_{c_{3}}, 3_{c_{1}}, 1_{c_{3}}, 3_{c_{1}},-1_{c_{3}}, 1_{c_{1}},-1_{c_{3}}\right)$ are multi-grounded partitions with ground c_{1}, c_{3} and relation \succ,
$\left(1_{c_{1}},-1_{c_{3}}, 1_{c_{1}},-1_{c_{3}}\right)$ and $\left(2_{c_{1}}, 1_{c_{1}},-1_{c_{3}}\right)$ are not.

Non-constant ground state paths

Let \mathcal{B} be a crystal of level ℓ, let λ be a dominant weight, and let

$$
\mathfrak{p}_{\lambda}=\left(g_{k}\right)_{k=0}^{\infty}=\cdots \otimes g_{k+1} \otimes g_{k} \otimes \cdots \otimes g_{1} \otimes g_{0}
$$

be the corresponding ground state path. It is always periodic. Let t denote the period of \mathfrak{p}_{λ}, i.e. the smallest positive integer k such that $g_{i+k}=g_{i}$ for all $i \geq 0$.

Non-constant ground state paths

Let \mathcal{B} be a crystal of level ℓ, let λ be a dominant weight, and let

$$
\mathfrak{p}_{\lambda}=\left(g_{k}\right)_{k=0}^{\infty}=\cdots \otimes g_{k+1} \otimes g_{k} \otimes \cdots \otimes g_{1} \otimes g_{0}
$$

be the corresponding ground state path. It is always periodic. Let t denote the period of \mathfrak{p}_{λ}, i.e. the smallest positive integer k such that $g_{i+k}=g_{i}$ for all $i \geq 0$.
Let H be an energy function on $\mathcal{B} \otimes \mathcal{B}$, and define

$$
H_{\lambda}\left(b \otimes b^{\prime}\right):=H\left(b \otimes b^{\prime}\right)-\frac{1}{t} \sum_{k=0}^{t-1} H\left(g_{k+1} \otimes g_{k}\right)
$$

Thus we have

$$
\sum_{k=0}^{t-1} H_{\lambda}\left(g_{k+1} \otimes g_{k}\right)=0
$$

Non-constant ground state paths

Let \mathcal{B} be a crystal of level ℓ, let λ be a dominant weight, and let

$$
\mathfrak{p}_{\lambda}=\left(g_{k}\right)_{k=0}^{\infty}=\cdots \otimes g_{k+1} \otimes g_{k} \otimes \cdots \otimes g_{1} \otimes g_{0}
$$

be the corresponding ground state path. It is always periodic. Let t denote the period of \mathfrak{p}_{λ}, i.e. the smallest positive integer k such that $g_{i+k}=g_{i}$ for all $i \geq 0$.
Let H be an energy function on $\mathcal{B} \otimes \mathcal{B}$, and define

$$
H_{\lambda}\left(b \otimes b^{\prime}\right):=H\left(b \otimes b^{\prime}\right)-\frac{1}{t} \sum_{k=0}^{t-1} H\left(g_{k+1} \otimes g_{k}\right)
$$

Thus we have

$$
\sum_{k=0}^{t-1} H_{\lambda}\left(g_{k+1} \otimes g_{k}\right)=0
$$

Let D be a positive integer such that $D H_{\lambda}(\mathcal{B} \otimes \mathcal{B}) \subset \mathbb{Z}$ and $\frac{1}{t} \sum_{k=0}^{t-1}(k+1) D H_{\lambda}\left(g_{k+1} \otimes g_{k}\right) \in \mathbb{Z}$.

Non-constant ground state paths

Let us define the relations on $\mathbb{Z}_{\mathcal{C}_{\mathcal{B}}}$:

$$
\begin{aligned}
k_{c_{b}} \gtrdot k_{c_{b^{\prime}}}^{\prime} & \Longleftrightarrow k-k^{\prime}=D H_{\lambda}\left(b^{\prime} \otimes b\right), \\
k_{c_{b}} \gg k_{c_{b^{\prime}}}^{\prime} & \Longleftrightarrow k-k^{\prime} \geq D H_{\lambda}\left(b^{\prime} \otimes b\right) .
\end{aligned}
$$

Theorem (D.-Konan 2021)

There is a bijection between the set of λ-paths $\mathcal{P}(\lambda)$ and the set ${ }_{t} \mathcal{P}_{c_{g_{0}} \cdots c_{g_{t-1}}}^{>}$of multi-grounded partitions of $\mathcal{P}_{c_{g_{0}} \cdots c_{g_{t-1}}}^{>}$whose number of parts is divisible by t.

Theorem (D.-Konan 2021)

Let ${ }^{d} \mathcal{P}$ be the set of partitions where all parts are divisible by d. There is a bijection between ${ }_{t} \mathcal{P}_{c_{g_{0}} \cdots c_{g_{t-1}}}^{>} \times{ }^{d} \mathcal{P}$ and ${ }_{t}^{d} \mathcal{P} \mathcal{P}_{c_{0} \cdots c_{g_{t-1}}}^{>}$, where ${ }_{t}^{d} \mathcal{P}{ }_{c_{g_{0}} \cdots c_{g_{t-1}}}^{\gg}$ is the set of $\pi \in{ }_{t} \mathcal{P}_{c_{g_{0}} \cdots c_{g_{t-1}}}$ such that for all k,
$\pi_{k}-\pi_{k+1}-D H_{\lambda}\left(p_{k+1} \otimes p_{k}\right) \in d \mathbb{Z}_{\geq 0}$, where $c\left(\pi_{k}\right)=c_{p_{k}}$ and $\pi_{s}=u_{c_{0}}^{(0)}$.

A general character formula

Theorem (D.-Konan 2021)

Let $L(\lambda)$ be an irreducible highest weight module of weight λ with constant ground state path. Setting $q=e^{-\delta /\left(d_{0} D\right)}$ and $c_{b}=e^{\overline{\mathrm{wt} b}}$ for all $b \in \mathcal{B}$, we have $c_{g_{0}} \cdots c_{g_{t-1}}=1$, and the character of the irreducible highest weight module $L(\lambda)$ is given by the following expressions:

$$
\begin{aligned}
& \sum C(\pi) q^{|\pi|}=e^{-\lambda} \operatorname{ch}(L(\lambda)), \\
& \mu \in_{t} \mathcal{P}_{c_{g_{0}} \cdots{ }_{g_{g}}}^{>} \\
& \sum_{\mathcal{P} \gg} C(\pi) q^{|\pi|}=\frac{e^{-\lambda} \operatorname{ch}(L(\lambda))}{\left(q^{d} ; q^{d}\right)_{\infty}} .
\end{aligned}
$$

Example: character of Λ_{0} in $A_{2 n-1}^{(2)}(n \geq 3)$

Ground state path: $\mathfrak{p}_{\Lambda_{0}}=\cdots \otimes \overline{1} \otimes 1 \otimes \overline{1} \otimes 1 \otimes \overline{1}$,

$$
H=\begin{gathered}
\\
1 \\
2 \\
\vdots \\
n \\
\bar{n} \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\overline{2} \\
\overline{1}
\end{gathered}\left(\begin{array}{cccccccc}
1 & 2 & \cdots & n & \bar{n} & \cdots & \overline{2} & \overline{1} \\
1 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 1 \\
\vdots & & \ddots & & & & & \\
\vdots \\
0 & & & 0^{*} & & \ddots & \ddots & \\
-1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & 1
\end{array}\right) .
$$

Example: character of Λ_{0} in $A_{2 n-1}^{(2)}(n \geq 3)$
We have $H(1 \otimes \overline{1})+H(\overline{1} \otimes 1)=0$, so $H_{\Lambda_{0}}=H$.

Example: character of Λ_{0} in $A_{2 n-1}^{(2)}(n \geq 3)$
We have $H(1 \otimes \overline{1})+H(\overline{1} \otimes 1)=0$, so $H_{\Lambda_{0}}=H$.
We apply our character formula with $d=2$ and $D=2$ and obtain

$$
\sum_{\pi \in \mathcal{C}_{2}^{2} \mathcal{T}_{c_{1} c_{1}}} C(\pi) q^{|\pi|}=\frac{e^{-\Lambda_{0}} \operatorname{ch}\left(L\left(\Lambda_{0}\right)\right)}{\left(q^{2} ; q^{2}\right)_{\infty}},
$$

where $q=e^{-\delta / 2}$ and $c_{b}=e^{\overline{\mathrm{wt}} b}$ for all $b \in \mathcal{B}$.

Example: character of Λ_{0} in $A_{2 n-1}^{(2)}(n \geq 3)$
We have $H(1 \otimes \overline{1})+H(\overline{1} \otimes 1)=0$, so $H_{\Lambda_{0}}=H$.
We apply our character formula with $d=2$ and $D=2$ and obtain
where $q=e^{-\delta / 2}$ and $c_{b}=e^{\overline{\mathrm{wt}} b}$ for all $b \in \mathcal{B}$.
Thus we must compute the generating function for ${ }_{2}^{2} \mathcal{P}_{\mathrm{C}_{\mathrm{T}} C_{1}}$, the set of multi-grounded partitions $\pi=\left(\pi_{0}, \ldots, \pi_{2 s-1},-1_{c_{1}}, 1_{c_{1}}\right)$ with relation and ground $c_{\overline{1}}, c_{1}$, having an even number of parts, such that for all $k \in\{0, \ldots, 2 s-1\}$,

$$
\pi_{k}-\pi_{k+1}-2 H\left(p_{k+1} \otimes p_{k}\right) \in 2 \mathbb{Z}_{\geq 0},
$$

where $c\left(\pi_{k}\right)=c_{p_{k}}$ and $\pi_{2 s}=-1_{c_{1}}$.

Example: character of Λ_{0} in $A_{2 n-1}^{(2)}(n \geq 3)$

	1	2	. .	n	\bar{n}		$\overline{2}$	1
1	(1							
2	0							:
:						1^{*}		\vdots
$H={ }^{n}$								
\bar{n}	-							
!	家		0*					
$\underline{2}$	0							:
$\overline{1}$	-1	0					0	$1)$

By the values of H, the condition $\pi_{k}-\pi_{k+1}-2 H\left(p_{k+1} \otimes p_{k}\right) \in 2 \mathbb{Z}_{\geq 0}$, and the fact that $u^{(0)}=-1$, the multi-grounded partitions of ${ }_{2}^{2} \mathcal{P}_{c_{1} c_{1}}^{\gg}$ have parts with odd sizes.

Example: character of Λ_{0} in $A_{2 n-1}^{(2)}(n \geq 3)$

By the values of H, the condition $\pi_{k}-\pi_{k+1}-2 H\left(p_{k+1} \otimes p_{k}\right) \in 2 \mathbb{Z}_{\geq 0}$, and the fact that $u^{(0)}=-1$, the multi-grounded partitions of ${ }_{2}^{2} \mathcal{P}_{c_{1} c_{1}}^{\gg}$ have parts with odd sizes.

The relation \gg corresponds to the following partial order on the set of coloured odd integers:

$$
\stackrel{(-1)_{c_{1}}}{1_{c_{1}}} \ll 1_{c_{2}} \ll \cdots<1_{c_{n}} \ll 1_{c_{n_{n}}} \ll \cdots<1_{c_{2}} \ll 1_{c_{c_{1}}} \ll 3_{c_{2}} \ll \cdots .
$$

Example: character of Λ_{0} in $A_{2 n-1}^{(2)}(n \geq 3)$

	1	2	.	n	\bar{n}		$\overline{2}$	
1	(1							
2	0							
						1^{*}		,
$H={ }^{n}$!			\because				,
$\bar{\square}$	引				\checkmark			-
\vdots			0*					
$\overline{2}$		0					\because)
$\overline{1}$	-1	0	.				0)

By the values of H, the condition $\pi_{k}-\pi_{k+1}-2 H\left(p_{k+1} \otimes p_{k}\right) \in 2 \mathbb{Z}_{\geq 0}$, and the fact that $u^{(0)}=-1$, the multi-grounded partitions of ${ }_{2}^{2} \mathcal{P}_{c_{1} c_{1}}^{\gg}$ have parts with odd sizes.

The relation \gg corresponds to the following partial order on the set of coloured odd integers:

$$
\begin{array}{r}
(-1)_{c_{\overline{1}}} \\
1_{c_{1}}
\end{array}<1_{c_{2}} \ll \cdots \ll 1_{c_{n}} \ll 1_{c_{\bar{n}}} \ll \cdots \ll 1_{c_{\overline{2}}} \ll \begin{aligned}
& 1_{c_{\overline{1}}} \ll 3_{c_{2}} \ll \cdots . \\
& 3_{c_{1}}
\end{aligned}<
$$

Only parts coloured c_{1} and $c_{\overline{1}}$ can appear several times, in sequences of the form

$$
\cdots \ll(2 k-1)_{c_{\overline{1}}} \ll(2 k+1)_{c_{1}} \ll(2 k-1)_{c_{\overline{1}}} \ll \cdots \ll(2 k-1)_{c_{\overline{1}}} \ll \cdots
$$

Example: character of Λ_{0} in $A_{2 n-1}^{(2)}(n \geq 3)$

$$
\begin{array}{r}
(-1)_{c_{\overline{1}}} \\
1_{c_{1}}
\end{array}<1_{c_{2}} \ll \cdots \ll 1_{c_{n}} \ll 1_{c_{\bar{\pi}}} \ll \cdots \ll 1_{c_{\overline{2}}} \ll 1_{c_{c_{1}}}^{3_{c_{1}}} \ll 3_{c_{2}} \ll \cdots,
$$

where parts coloured c_{1} and $c_{\overline{1}}$ can repeat in sequences

$$
\cdots \ll(2 k-1)_{c_{\overline{1}}} \ll(2 k+1)_{c_{1}} \ll(2 k-1)_{c_{\overline{1}}} \ll \cdots \ll(2 k-1)_{c_{\overline{1}}} \ll \cdots .
$$

For fixed $k \geq 1$, sequences of parts coloured c_{1} and $c_{\overline{1}}$ are generated by

$$
\frac{\left(1+c_{\overline{1}} q^{2 k-1}\right)\left(1+c_{1} q^{2 k+1}\right)}{\left(1-c_{\overline{1}} c_{1} q^{4 k}\right)} .
$$

For $k=0$, the sequence $\left(1_{c_{1}},(-1)_{c_{1}}, 1_{c_{1}}\right)$ can occur at the end of the partitions grounded in $c_{\overline{1}}, c_{1}$, but $\left((-1)_{c_{1}}, 1_{c_{1}},(-1)_{c_{\overline{1}}}, 1_{c_{1}}\right)$ cannot. So, if we temporarily forgot the condition on the even number of parts in ${ }_{2}^{2} \mathcal{P} \gg \bar{c}_{1} c_{1}$, the generation function would be

$$
\left(1+c_{1} q\right) \cdot \frac{\left(-c_{1} q^{3},-c_{\overline{1}} q,-c_{2} q,-c_{2} q, \ldots,-c_{n} q,-c_{\bar{n}} q ; q^{2}\right)_{\infty}}{\left(c_{\overline{1}} c_{1} q^{4} ; q^{4}\right)_{\infty}}
$$

Example: character of Λ_{0} in $A_{2 n-1}^{(2)}(n \geq 3)$

Observation

$$
\sum_{n, k \geq 0} a_{n, k} x^{k} q^{n}+\sum_{n, k \geq 0} a_{n, k}(-x)^{k} q^{n}=2 \sum_{n, k \geq 0} a_{n, 2 k} x^{2 k} q^{n}
$$

Thus, the generating function for multi-grounded partitions in ${ }_{2}^{2} \mathcal{P}_{c_{1} c_{1}}^{\gg}$ is

$$
\sum_{\pi \in{ }_{2}^{2} \mathcal{P}_{c_{1} c_{1}}} C(\pi) q^{|\pi|}=\frac{1}{2\left(c_{\overline{1}} c_{1} q^{4} ; q^{4}\right)_{\infty}}\left(\left(-c_{1} q,-c_{\overline{1}} q, \ldots,-c_{n} q,-c_{\bar{n}} q ; q^{2}\right)_{\infty}\right.
$$

$$
\left.+\left(c_{1} q, c_{1} q, \ldots, c_{n} q, c_{\bar{n}} q ; q^{2}\right)_{\infty}\right)
$$

$$
=\frac{e^{-\Lambda_{0}} \operatorname{ch}\left(L\left(\Lambda_{0}\right)\right)}{\left(q^{2} ; q^{2}\right)_{\infty}}
$$

where $\delta=\alpha_{0}+\alpha_{1}+2 \alpha_{2} \cdots+2 \alpha_{n-1}+\alpha_{n}$, $q=e^{-\delta / 2} \quad$ and $\quad c_{i}=e^{\alpha_{i}+\cdots+\alpha_{n-1}+\alpha_{n} / 2}$ for all $i \in\{1, \ldots, n\}$.

Thank you very much!

