Calcul de caractères d'algèbres de Lie avec les partitions d'entiers

Jehanne Dousse (travail en commun avec Isaac Konan)

Université de Genève

Séminaire Flajolet 6 octobre 2022

Outline

Basics on affine Lie algebras

2 Character formulas

3 Crystals and grounded partitions

4 Multi-grounded partitions

Lie algebras

Definition

A *Lie algebra* \mathfrak{g} is a vector space together with a bilinear map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, called the Lie bracket, satisfying:

- alternativity : for all $x \in \mathfrak{g}$, [x, x] = 0,
- the Jacobi identity: for all $x, y, z \in \mathfrak{g}$, [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Lie algebras

Definition

A *Lie algebra* \mathfrak{g} is a vector space together with a bilinear map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, called the Lie bracket, satisfying:

• alternativity : for all $x \in \mathfrak{g}$, [x, x] = 0,

• the Jacobi identity: for all
$$x, y, z \in \mathfrak{g}$$
,
 $[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.$

Example

The special linear Lie algebra of order n, denoted A_{n-1} or $\mathfrak{sl}_n(\mathbb{C})$, is the Lie algebra of $n \times n$ matrices with trace zero and with the Lie bracket [X, Y] = XY - YX.

Representations

Definition

A representation (or module) of \mathfrak{g} is a vector space V together with a linear map $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$, such that

$$\rho([X, Y]) = \rho(X)\rho(Y) - \rho(Y)\rho(X).$$

By abuse of notation, V is often called a g-module and $\rho(X)(v)$ is often written $X \cdot v$.

Representations

Definition

A representation (or module) of \mathfrak{g} is a vector space V together with a linear map $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$, such that

$$\rho([X, Y]) = \rho(X)\rho(Y) - \rho(Y)\rho(X).$$

By abuse of notation, V is often called a g-module and $\rho(X)(v)$ is often written $X \cdot v$.

Examples

• trivial representation $ho:\mathfrak{g}
ightarrow\mathfrak{gl}(V)$ such that ho(X)=0 for all $X\in\mathfrak{g},$

Representations

Definition

A representation (or module) of \mathfrak{g} is a vector space V together with a linear map $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$, such that

$$\rho([X, Y]) = \rho(X)\rho(Y) - \rho(Y)\rho(X).$$

By abuse of notation, V is often called a g-module and $\rho(X)(v)$ is often written $X \cdot v$.

Examples

- trivial representation $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ such that $\rho(X) = 0$ for all $X \in \mathfrak{g}$,
- adjoint representation $ad : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ such that ad(X)(Y) = [X, Y] for all $X, Y \in \mathfrak{g}$.

Semi-simple Lie algebras

Definition

Let \mathfrak{g} be a Lie algebra. A subspace $\mathfrak{h}\subset\mathfrak{g}$ is an *ideal* of \mathfrak{g} if

 $\forall g \in \mathfrak{g}, \forall h \in \mathfrak{h}, [g, h] \in \mathfrak{h}.$

Semi-simple Lie algebras

Definition

Let \mathfrak{g} be a Lie algebra. A subspace $\mathfrak{h} \subset \mathfrak{g}$ is an *ideal* of \mathfrak{g} if

 $\forall g \in \mathfrak{g}, \forall h \in \mathfrak{h}, [g, h] \in \mathfrak{h}.$

Definition

A Lie algebra \mathfrak{g} is said to be *simple* if it is non-abelian (i.e. there exist some $x, y \in \mathfrak{g}$ such that $[x, y] \neq 0$) and it does not have non-trivial ideals.

Semi-simple Lie algebras

Definition

Let \mathfrak{g} be a Lie algebra. A subspace $\mathfrak{h}\subset\mathfrak{g}$ is an ideal of \mathfrak{g} if

 $\forall g \in \mathfrak{g}, \forall h \in \mathfrak{h}, [g, h] \in \mathfrak{h}.$

Definition

A Lie algebra \mathfrak{g} is said to be *simple* if it is non-abelian (i.e. there exist some $x, y \in \mathfrak{g}$ such that $[x, y] \neq 0$) and it does not have non-trivial ideals.

Definition

A Lie algebra \mathfrak{g} is said to be *semi-simple* if it is a direct sum of simple Lie algebras.

Semi-simple Lie algebras can be described in terms of generators and relations.

Infinite dimensional Lie algebras

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra.

It is possible to define and affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$ corresponding to \mathfrak{g} as

$$\hat{\mathfrak{g}} := \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c,$$

where $\mathbb{C}[t, t^{-1}]$ is the complex vector space of Laurent polynomials in the indeterminate *t*, and $\mathbb{C}c$ is $\hat{\mathfrak{g}}$'s center (one-dimensional) which satisfies [c,g] = 0 for all $g \in \mathfrak{g}$.

Infinite dimensional Lie algebras

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra.

It is possible to define and affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$ corresponding to \mathfrak{g} as

$$\hat{\mathfrak{g}} := \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c,$$

where $\mathbb{C}[t, t^{-1}]$ is the complex vector space of Laurent polynomials in the indeterminate t, and $\mathbb{C}c$ is $\hat{\mathfrak{g}}$'s center (one-dimensional) which satisfies [c,g] = 0 for all $g \in \mathfrak{g}$.

Kac-Moody Lie algebras can also be described in terms of generators and relations.

Weights

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra with a Cartan subalgebra \mathfrak{h} (nilpotent subalgebra which is self-normalizing, i.e. if $\forall X \in \mathfrak{h}, [X, Y] \in \mathfrak{h}$, then $Y \in \mathfrak{h}$).

Weights

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra with a Cartan subalgebra \mathfrak{h} (nilpotent subalgebra which is self-normalizing, i.e. if $\forall X \in \mathfrak{h}, [X, Y] \in \mathfrak{h}$, then $Y \in \mathfrak{h}$).

Definition

Let V be a g-module and μ be a linear functional on \mathfrak{h} . The weight space of V with weight μ is $V_{\mu} := \{v \in V : \forall H \in \mathfrak{h}, H \cdot v = \mu(H)v\}$. A weight is a linear functional μ such that V_{μ} is non-zero. If V is a direct sum $V = \bigoplus_{\mu} V_{\mu}$ of its weight spaces, then it is called a weight module.

Weights

Let \mathfrak{g} be a finite dimensional semi-simple Lie algebra with a Cartan subalgebra \mathfrak{h} (nilpotent subalgebra which is self-normalizing, i.e. if $\forall X \in \mathfrak{h}, [X, Y] \in \mathfrak{h}$, then $Y \in \mathfrak{h}$).

Definition

Let V be a g-module and μ be a linear functional on \mathfrak{h} . The weight space of V with weight μ is $V_{\mu} := \{v \in V : \forall H \in \mathfrak{h}, H \cdot v = \mu(H)v\}$. A weight is a linear functional μ such that V_{μ} is non-zero. If V is a direct sum $V = \bigoplus_{\mu} V_{\mu}$ of its weight spaces, then it is called a weight module.

The roots are weights for the adjoint representation.

A weight λ is *higher* than another weight μ if $\lambda - \mu$ can be written as a sum of positive roots, and λ is a *highest weight* if it is higher than any other weight in V.

Outline

Basics on affine Lie algebras

2 Character formulas

3 Crystals and grounded partitions

4 Multi-grounded partitions

Characters

Definition

Let $L(\lambda) = \bigoplus_{\mu \in \mathfrak{h}^*} V_{\mu}$ be an irreducible highest weight module with highest weight λ . The *character* $chL(\lambda)$ of V is defined as

$$\mathrm{ch}\mathcal{L}(\lambda) = \sum_{\mu\in\mathfrak{h}^*} \dim(V_\mu) e^\mu,$$

where e^{μ} is a formal exponential satisfying $e^{\mu}e^{\mu'}=e^{\mu+\mu'}$.

Characters

Definition

Let $L(\lambda) = \bigoplus_{\mu \in \mathfrak{h}^*} V_{\mu}$ be an irreducible highest weight module with highest weight λ . The *character* $chL(\lambda)$ of V is defined as

$$\mathrm{ch} \mathcal{L}(\lambda) = \sum_{\mu \in \mathfrak{h}^*} \dim(V_\mu) e^\mu,$$

where e^{μ} is a formal exponential satisfying $e^{\mu}e^{\mu'}=e^{\mu+\mu'}$.

By definition of a highest weight,

$$e^{-\lambda} \mathrm{ch} \mathcal{L}(\lambda) = \sum_{\mu \in \mathfrak{h}^*} \dim(V_\mu) e^{\mu - \lambda}$$

is a series with positive coefficients in $\mathbb{Z}[[e^{-\alpha_0}, \ldots, e^{-\alpha_n}]]$, where $\alpha_0, \ldots, \alpha_n$ are the simple roots.

Jehanne Dousse (UniGE)

Character formulas

Theorem (Weyl-Kac character formula)

$$\operatorname{ch}(\mathcal{L}(\lambda)) = \frac{\sum_{w \in W} \operatorname{sgn}(w) e^{w(\lambda+\rho)-\rho}}{\prod_{\alpha \in \Delta^+} (1-e^{-\alpha})^{\operatorname{dim}\mathfrak{g}_{\alpha}}},$$

where W is the Weyl group of \mathfrak{g} , Δ^+ the set of positive roots of \mathfrak{g} , $\operatorname{sgn}(w)$ the signature of w, $\rho \in \mathfrak{h}^*$ the Weyl vector, and \mathfrak{g}_{α} the α root space of \mathfrak{g} .

Character formulas

Theorem (Weyl-Kac character formula)

$$\operatorname{ch}(\mathcal{L}(\lambda)) = rac{\sum_{w \in W} \operatorname{sgn}(w) e^{w(\lambda +
ho) -
ho}}{\prod_{lpha \in \Delta^+} (1 - e^{-lpha})^{\operatorname{dim} \mathfrak{g}_lpha}},$$

where W is the Weyl group of \mathfrak{g} , Δ^+ the set of positive roots of \mathfrak{g} , $\operatorname{sgn}(w)$ the signature of w, $\rho \in \mathfrak{h}^*$ the Weyl vector, and \mathfrak{g}_{α} the α root space of \mathfrak{g} .

Beautiful formula but does not exhibit the positivity of the coefficients.

Character formulas

Theorem (Weyl-Kac character formula)

$$\operatorname{ch}(\mathcal{L}(\lambda)) = rac{\sum_{w \in W} \operatorname{sgn}(w) e^{w(\lambda +
ho) -
ho}}{\prod_{lpha \in \Delta^+} (1 - e^{-lpha})^{\operatorname{dim} \mathfrak{g}_lpha}},$$

where W is the Weyl group of \mathfrak{g} , Δ^+ the set of positive roots of \mathfrak{g} , $\operatorname{sgn}(w)$ the signature of w, $\rho \in \mathfrak{h}^*$ the Weyl vector, and \mathfrak{g}_{α} the α root space of \mathfrak{g} .

Beautiful formula but **does not exhibit the positivity** of the coefficients. Principal specialisation $(e^{-\alpha_i} \mapsto q \text{ for all } i)$ gives an infinite product.

Example: $A_1^{(1)}$ at level 3 (Lepowsky–Wilson)

$$e^{-\Lambda_0+2\Lambda_1}\mathrm{ch}\mathcal{L}(\Lambda_0+2\Lambda_1)=\frac{(-q;q)_{\infty}}{(q,q^4;q^5)_{\infty}}, e^{-3\Lambda_1}\mathrm{ch}\mathcal{L}(3\Lambda_1)=\frac{(-q;q)_{\infty}}{(q^2,q^3;q^5)_{\infty}},$$

where $(a; q)_n = \prod_{k=0}^{n-1} (1 - aq^k)$ and $(a, b; q)_n = (a; q)_n (b; q)_n$.

Digression: The Rogers-Ramanujan identities

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of positive integers $(\lambda_1, \ldots, \lambda_m)$ such that $\lambda_1 + \cdots + \lambda_m = n$. The integers $\lambda_1, \ldots, \lambda_m$ are called the *parts* of the partition λ .

Example

There are 5 partitions of 4: 4, (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).

Digression: The Rogers-Ramanujan identities

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of positive integers $(\lambda_1, \ldots, \lambda_m)$ such that $\lambda_1 + \cdots + \lambda_m = n$. The integers $\lambda_1, \ldots, \lambda_m$ are called the *parts* of the partition λ .

Example

There are 5 partitions of 4: 4, (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).

• The generating function for partitions into distinct parts congruent to *k* mod *N* is

$$(-zq^k;q^N)_\infty.$$

• The generating function for partitions into parts congruent to k mod N is

$$\frac{1}{(zq^k;q^N)_{\infty}}$$

Digression: The Rogers-Ramanujan identities

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of positive integers $(\lambda_1, \ldots, \lambda_m)$ such that $\lambda_1 + \cdots + \lambda_m = n$. The integers $\lambda_1, \ldots, \lambda_m$ are called the *parts* of the partition λ .

Example

There are 5 partitions of 4: 4, (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_n} = \frac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}},$$

For every positive integer n, the number of partitions of n such that the difference between two consecutive parts is at least 2 is equal to the number of partitions of n into parts congruent to 1 or 4 modulo 5.

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

$$(-q;q)_{\infty}\sum_{n=0}^{\infty}\frac{q^{n^2}}{(q;q)_n}=(-q;q)_{\infty}\frac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}}$$

Obtained by giving two different formulations for the principal specialisation

$$e^{-lpha_0}\mapsto q, \quad e^{-lpha_1}\mapsto q$$

of $e^{-\Lambda_0+2\Lambda_1} \operatorname{ch} L(\Lambda_0+2\Lambda_1)$, where $L(\Lambda_0+2\Lambda_1)$ is an irreducible highest weight $A_1^{(1)}$ -module of level 3 with highest weight $\Lambda_0+2\Lambda_1$, and α_0, α_1 are the simple roots.

RHS: principal specialisation of the Weyl-Kac character formula

LHS: comes from the construction of a basis of $L(\Lambda_0+2\Lambda_1)$ using vertex operators

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

$$(-q;q)_{\infty}\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_n} = (-q;q)_{\infty} \frac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}}$$

LHS: comes from the construction of a basis of $L(\Lambda_0 + 2\Lambda_1)$ using vertex operators.

Very rough idea:

- Start with a spanning set of $L(\Lambda_0 + 2\Lambda_1)$: here, monomials of the form $Z_1^{f_1} \dots Z_s^{f_s}$ for $s, f_1, \dots, f_s \in \mathbb{N}_{\geq 0}$.
- Using Lie theory, reduce this spanning set: here, it allows one to remove all monomials containing Z_i^2 or $Z_j Z_{j+1}$.
- Show that the obtained set is a basis of the representation (difficult).

Partition identities and characters

With Lepowsky and Wilson's approach (vertex operators + Weyl–Kac): discovery of many new partition identities yet unknown to combinatorialists

- Meurman–Primc 1987: higher levels of $A_1^{(1)}$
- Capparelli 1993: level 3 standard modules of $A_2^{(2)}$
- Siladić 2002: twisted level 1 modules of $A_2^{(2)}$
- Nandi 2014: level 4 standard modules of $A_2^{(2)}$
- Primc and Šikić 2016: level k standard modules of $C_n^{(1)}$

But often these identities are only conjectured, not proved, through this method. On the other hand, if a combinatorial proof is found, it also implies equality of characters.

Back to characters

The character

$$e^{-\lambda} \mathrm{ch} \mathcal{L}(\lambda) = \sum_{\mu \in \mathfrak{h}^*} \dim(V_\mu) e^{\mu - \lambda}$$

is a series with positive coefficients in $\mathbb{Z}[[e^{-\alpha_0}, \ldots, e^{-\alpha_n}]]$ Combinatorics can help finding explicit expressions of that shape:

- Andrews–Schilling–Warnaar 1999
- Bartlett–Warnaar 2015
- Crystal bases (KMN² 1992, Primc 1998, D.-Konan 2021)

Outline

Basics on affine Lie algebras

2 Character formulas

Orystals and grounded partitions

4 Multi-grounded partitions

Crystals: "combinatorial representations" of Lie algebras Crystal for the vector representation of the affine Lie algebra $A_{n-1}^{(1)}$:

If $b_1 \xrightarrow{i} b_2$, we write $\tilde{f}_i b_1 = b_2$, or equivalently $b_1 = \tilde{e}_i b_2$. Let $\varphi_i(b)$ (resp. $\varepsilon_i(b)$) denote the length of the maximal chain of *i*-arrows coming out of (resp. arriving in) *b*.

The dual of \mathcal{B} :

We have $\tilde{f}_i b_1 = b_2$ in \mathcal{B} if and only if $\tilde{e}_i b_1^{\vee} = b_2^{\vee}$.

Crystals: "combinatorial representations" of Lie algebras

If \mathcal{B}_1 is a crystal for the representation M_1 and \mathcal{B}_2 is a crystal for the representation M_2 , then we can define a crystal $\mathcal{B}_1 \otimes \mathcal{B}_2$ with the following arrows:

$$ilde{e}_i(b_1\otimes b_2) = egin{cases} ilde{e}_ib_1\otimes b_2 & ext{if} \ arphi_i(b_1)\geq arepsilon_i(b_2), \ b_1\otimes ilde{e}_ib_2 & ext{if} \ arphi_i(b_1)arepsilon_i(b_2), \ b_1\otimes ilde{f}_ib_2 & ext{if} \ arphi_i(b_1)>arepsilon_i(b_2), \ b_1\otimes ilde{f}_ib_2 & ext{if} \ arphi_i(b_1)\leq arepsilon_i(b_2), \end{cases}$$

and $\mathcal{B}_1 \otimes \mathcal{B}_2$ is a crystal for $M_1 \otimes M_2$.

Example: $A_1^{(1)}$ at level 1

$$ilde{f}_i(b_1\otimes b_2) = egin{cases} ilde{f}_ib_1\otimes b_2 & ext{if} \ \ arphi_i(b_1) > arepsilon_i(b_2), \ b_1\otimes ilde{f}_ib_2 & ext{if} \ \ arphi_i(b_1) \leq arepsilon_i(b_2), \end{cases}$$

Energy functions

Definition

An energy function on $\mathcal{B} \otimes \mathcal{B}$ is a map $H : \mathcal{B} \otimes \mathcal{B} \to \mathbb{Z}$ satisfying for all *i*,

$$H\left(\tilde{e}_i(b_1 \otimes b_2)\right) = \begin{cases} H(b_1 \otimes b_2) & \text{if } i \neq 0, \\ H(b_1 \otimes b_2) + 1 & \text{if } i = 0 \text{ and } \varphi_0(b_1) \geq \varepsilon_0(b_2) \\ H(b_1 \otimes b_2) - 1 & \text{if } i = 0 \text{ and } \varphi_0(b_1) < \varepsilon_0(b_2). \end{cases}$$

By definition, the value of $H(b_1 \otimes b_2)$ determines the values $H(b'_1 \otimes b'_2)$ of all the vertices $b'_1 \otimes b'_2$ which are in the same connected component as $b_1 \otimes b_2$.

The $(KMN)^2$ crystal base character formula (1992)

To each dominant weight λ , one can associate a ground state path

$$\mathfrak{p}_{\lambda} = (g_k)_{k=0}^{\infty} = \cdots \otimes g_{k+1} \otimes g_k \otimes \cdots \otimes g_1 \otimes g_0,$$

where $g_i \in \mathcal{B}$ for all *i*.

A tensor product $\mathfrak{p} = (p_k)_{k=0}^{\infty} = \cdots \otimes p_{k+1} \otimes p_k \otimes \cdots \otimes p_1 \otimes p_0$ of elements $p_k \in \mathcal{B}$ is said to be a λ -path if $p_k = g_k$ for k large enough. Let $\mathcal{P}(\lambda)$ denote the set of λ -paths.

Theorem (Kang–Kashiwara–Misra–Miwa–Nakashima–Nakayashiki)

Let $L(\lambda)$ be an irreducible highest weight module of weight λ . We have

$$\operatorname{ch}(\mathcal{L}(\lambda)) = \sum_{\mathfrak{p}\in\mathcal{P}(\lambda)} e^{\operatorname{wt}\mathfrak{p}},$$

where wtp is defined in terms of the energy function and the simple roots.

Example: Primc's identity on $A_1^{(1)}$ at level 1

Example: Primc's identity on $A_1^{(1)}$ at level 1

Jehanne Dousse (UniGE)

Primc's identity

Let *P* be the energy function in $(\mathcal{B} \otimes \mathcal{B}^{\vee}) \otimes (\mathcal{B} \otimes \mathcal{B}^{\vee})$ for $A_1^{(1)}$. Partitions in four colours *a*, *b*, *c*, *d*, with the order

 $1_a < 1_b < 1_c < 1_d < 2_a < 2_b < 2_c < 2_d < \cdots$

and difference conditions

$$P = \begin{pmatrix} a & b & c & d \\ 2 & 1 & 2 & 2 \\ b & 2 & 1 & 0 & 1 & 1 \\ c & 1 & 0 & 2 & 2 \\ d & 1 & 0 & 2 & 2 \end{pmatrix}.$$

Primc (1998) conjectured that after performing the dilations

$$k_a \rightarrow 2k - 1, k_b \rightarrow 2k, k_c \rightarrow 2k, k_d \rightarrow 2k + 1,$$

the generating function for these partitions (not keeping track of the colours) becomes $\frac{1}{(q;q)_{\infty}}$.

Jehanne Dousse (UniGE)

Refinement of Primc's identity

Theorem (D.–Lovejoy 2017)

Let $P(n; k, \ell, m)$ denote the number of partitions satisfying the difference conditions of matrix P, with k parts coloured a, ℓ parts coloured c and m parts coloured d. Then

$$\sum_{\substack{n,k,\ell,m\geq 0}} P(n;k,\ell,m) q^n a^k c^\ell d^m = \frac{(-aq;q^2)_\infty (-dq;q^2)_\infty}{(q;q)_\infty (cq;q^2)_\infty}$$

Proved via a variant of the method of weighted words (D. 2016) using q-difference equations, not at all related to crystals.

Another identity of Primc

Studying crystal bases of $A_2^{(1)}$, Primc proved that, after performing certain dilations (corresponding to the principal specialisation), the generating function for coloured partitions satisfying the difference conditions

	a_2b_0	a_2b_1	a_1b_0	$a_0 b_0$	a_2b_2	a_1b_1	a_0b_1	a_1b_2	$a_0 b_2$
$a_2 b_0$	(2	2	2	1	2	2	2	2	2
a_2b_1	1	2	1	1	2	1	2	2	2
a_1b_0	1	1	2	1	1	2	2	2	2
$a_0 b_0$	1	1	1	0	1	1	1	1	1
a2b2	0	0	1	1	0	1	1	2	2
a_1b_1	0	1	0	1	1	0	2	1	2
a_0b_1	0	1	0	1	1	0	2	1	2
a_1b_2	0	0	1	1	0	1	1	2	2
$a_0 b_2$	(0	0	0	1	0	0	1	1	2 /

becomes

$$\frac{1}{(q;q)_{\infty}}.$$

The starting point of our work

We wanted to generalise (purely combinatorially) Primc's two identities to obtain an infinite family of partition identities with n^2 colours.

The starting point of our work

We wanted to generalise (purely combinatorially) Primc's two identities to obtain an infinite family of partition identities with n^2 colours.

Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be two sequences of symbols. We use them to define the set of colours: $\{a_i b_k : i, k \in \mathbb{N}\}$.

Definition

For all $i, k, i', k' \in \mathbb{N}$, we define the minimal difference Δ between a part coloured $a_i b_k$ and a part coloured $a_{i'} b_{k'}$ in the following way:

$$\Delta(a_i b_k, a_{i'} b_{k'}) = \chi(i \ge i') - \chi(i = k = i') + \chi(k \le k') - \chi(k = i' = k'),$$

where $\chi(prop)$ equals 1 if prop is true and 0 otherwise.

For every positive integer n, let \mathcal{P}_n denote the set of partitions with colours $\{a_i b_k : 0 \le i, k \le n-1\}$, satisfying the difference conditions Δ .

Generalisation of Primc's identity

Set for all i, $a_i = b_i^{-1}$. Let $P_n(m; u_0, \ldots, u_{n-1}; v_0, \ldots, v_{n-1})$ denote the number of n^2 -coloured of m which belong to \mathcal{P}_n , where for $i \in \{0, \ldots, n-1\}$, the symbol a_i (resp. b_i) appears u_i (resp. v_i) times in its colour sequence.

Theorem (D.–Konan (2019))

For every positive integer n, we have

$$\sum_{\substack{m,u_0,\ldots,u_{n-1},v_0,\ldots,v_{n-1}\geq 0\\ = [x^0]} \prod_{i=0}^{n-1} (-b_i^{-1}xq;q)_{\infty} (-b_ix^{-1};q)_{\infty}.$$

Principal specialisation

In his paper, Primc used the principal specialisation:

Corollary (D.–Konan (2019))

Let *n* be a positive integer. By doing the dilations above, the generating function for the coloured partitions in \mathcal{P}_n becomes:

$$[x^{0}] \prod_{i=0}^{n-1} (-q^{n-i}x; q^{n})_{\infty} (-q^{i}x^{-1}; q^{n})_{\infty} = [x^{0}] (-qx; q)_{\infty} (-x^{-1}; q)_{\infty}$$
$$= \frac{1}{(q; q)_{\infty}}.$$

The cases n = 2 and n = 3 recover Primc's original results.

Connection with energy functions

The difference conditions for Primc's identities were energy functions for crystals of $A_1^{(1)}$ and $A_2^{(1)}$, respectively. Are our generalised difference conditions also energy functions?

Connection with energy functions

The difference conditions for Primc's identities were energy functions for crystals of $A_1^{(1)}$ and $A_2^{(1)}$, respectively. Are our generalised difference conditions also energy functions?

Theorem (D.–Konan 2019)

Let n be a positive integer, and let $\mathcal{B} = \{v_i : i \in \{0, \dots, n-1\}\}$ denote the crystal of the vector representation of $A_{n-1}^{(1)}$. The crystal $\mathbb{B} = \mathcal{B} \otimes \mathcal{B}^{\vee}$ is a perfect crystal of level 1 whose energy function such that $H((v_0 \otimes v_0^{\vee}) \otimes (v_0 \otimes v_0^{\vee})) = 0$ satisfies for all $k, \ell, k', \ell' \in \{0, \dots, n-1\}$,

$$H((v_{\ell'} \otimes v_{k'}^{\vee}) \otimes (v_{\ell} \otimes v_{k}^{\vee})) = \Delta(a_k b_{\ell}; a_{k'} b_{\ell'}),$$

where Δ is our generalised difference condition.

Back to character formulas

Reminder: (KMN)² character formula

Let $L(\lambda)$ be an irreducible highest weight module of weight λ . We have

$$\operatorname{ch}(\mathcal{L}(\lambda)) = \sum_{\mathfrak{p} \in \mathcal{P}(\lambda)} e^{\operatorname{wt}\mathfrak{p}},$$

where $\mathcal{P}(\lambda)$ is the set of λ -paths.

Back to character formulas

Reminder: (KMN)² character formula

Let $L(\lambda)$ be an irreducible highest weight module of weight λ . We have

$$\operatorname{ch}(\mathcal{L}(\lambda)) = \sum_{\mathfrak{p}\in\mathcal{P}(\lambda)} e^{\operatorname{wtp}},$$

where $\mathcal{P}(\lambda)$ is the set of λ -paths.

In $A_{n-1}^{(1)}$, the fundamental weights are $\Lambda_0, \ldots, \Lambda_{n-1}$. With respect to the crystal $\mathcal{B} \otimes \mathcal{B}^{\vee}$, they all have *constant ground state paths*.

Back to character formulas

Reminder: (KMN)² character formula

Let $L(\lambda)$ be an irreducible highest weight module of weight λ . We have

$$\operatorname{ch}(\mathcal{L}(\lambda)) = \sum_{\mathfrak{p} \in \mathcal{P}(\lambda)} e^{\operatorname{wt}\mathfrak{p}},$$

where $\mathcal{P}(\lambda)$ is the set of λ -paths.

In $A_{n-1}^{(1)}$, the fundamental weights are $\Lambda_0, \ldots, \Lambda_{n-1}$. With respect to the crystal $\mathcal{B} \otimes \mathcal{B}^{\vee}$, they all have constant ground state paths.

Goal: relate λ -paths to coloured partitions to translate our partition identities into character formulas for $A_{n-1}^{(1)}$.

Grounded partitions

Definition

Let C be a set of colours and $c_g \in C$. Let \succ be a binary relation defined on the coloured integers $\mathbb{Z}_C = \{k_c : k \in \mathbb{Z}, c \in C\}$. A grounded partition with ground c_g and relation \succ is a finite sequence (π_0, \ldots, π_s) of coloured integers, such that

• for all
$$i \in \{0, ..., s - 1\}, \pi_i \succ \pi_{i+1}$$
,

•
$$\pi_s = 0_{c_g}$$
 ,

•
$$\pi_{s-1} \neq 0_{c_g}$$

Let $\mathcal{P}_{c_{\sigma}}^{\succ}$ denote the set of such partitions.

Example

Let $C = c_1, c_2, c_3$, and for all $k \in \mathbb{Z}, c, c' \in C$, $k_c \succ k'_{c'} \Leftrightarrow k = k' + 1$. The sequence $(4_{c_1}, 3_{c_3}, 2_{c_2}, 1_{c_2}, 0_{c_1})$ is a grounded partition with ground c_1 and relation \succ .

Connection with ground state paths

Let \mathcal{B} a perfect crystal and λ be a highest weight such that the corresponding ground state path is constant $\mathfrak{p}_{\lambda} = \cdots \otimes g \otimes g \otimes g$. Let H be an energy function on $\mathcal{B} \otimes \mathcal{B}$ such that $H(g \otimes g) = 0$. Let $\mathcal{C}_{\mathcal{B}} = \{c_b : b \in \mathcal{B}\}$ be the set of colours indexed by the vertices of \mathcal{B} . We define the binary relations \gg and \gg on $\mathbb{Z}_{\mathcal{C}_{\mathcal{B}}}$ by

$$k_{c_b} > k'_{c_{b'}}$$
 if and only if $k - k' = H(b' \otimes b)$,
 $k_{c_b} \gg k'_{c_{b'}}$ if and only if $k - k' \ge H(b' \otimes b)$.

Connection with ground state paths

Let \mathcal{B} a perfect crystal and λ be a highest weight such that the corresponding ground state path is constant $\mathfrak{p}_{\lambda} = \cdots \otimes g \otimes g \otimes g$. Let H be an energy function on $\mathcal{B} \otimes \mathcal{B}$ such that $H(g \otimes g) = 0$. Let $\mathcal{C}_{\mathcal{B}} = \{c_b : b \in \mathcal{B}\}$ be the set of colours indexed by the vertices of \mathcal{B} . We define the binary relations \gg and \gg on $\mathbb{Z}_{\mathcal{C}_{\mathcal{B}}}$ by

$$k_{c_b} > k'_{c_{b'}}$$
 if and only if $k - k' = H(b' \otimes b)$,
 $k_{c_b} \gg k'_{c_{k'}}$ if and only if $k - k' \ge H(b' \otimes b)$.

Theorem (D.–Konan 2019)

The set of λ -paths is in bijection with the set of grounded partitions $\mathcal{P}_{c_r}^{\geq}$.

Theorem (D.–Konan 2019)

There is a bijection between $\mathcal{P}_{c_g}^{\gg}$ and $\mathcal{P}_{c_g}^{>} \times \mathcal{P}_{c_g}$, where \mathcal{P}_{c_g} is the set of coloured partitions where all parts have colour c_g .

Jehanne Dousse (UniGE)

New combinatorial character formula

Theorem (D.–Konan 2019)

Let $L(\lambda)$ be an irreducible highest weight module of weight λ with constant ground state path. Denoting by $C(\pi)$ the colour sequence of π and setting $q = e^{-\delta/d_0}$ and $c_b = e^{\text{wtb}}$ for all $b \in \mathcal{B}$, we have

$$\sum_{\pi\in\mathcal{P}^{\geqslant}_{c_{g}}} C(\pi)q^{|\pi|} = e^{-\lambda}\mathrm{ch}(\mathcal{L}(\lambda)), \ \sum_{\pi\in\mathcal{P}^{\geqslant}_{c_{g}}} C(\pi)q^{|\pi|} = rac{e^{-\lambda}\mathrm{ch}(\mathcal{L}(\lambda))}{(q;q)_{\infty}}.$$

Non-specialised character formula for $A_{n-1}^{(1)}$

Combining our new character formula with our generalisation of Primc's identity, we obtain:

Theorem (D.–Konan 2019)

Let n be a positive integer, and let $\Lambda_0, \ldots, \Lambda_{n-1}$ be the fundamental weights of $A_{n-1}^{(1)}$. By setting $e^{\operatorname{wt} v_i} = b_i$ and $e^{-\delta} = q$, we have:

$$\frac{e^{-\Lambda_{\ell}}\mathrm{ch}(L(\Lambda_{\ell}))}{(q;q)_{\infty}} = [x^{0}] \Biggl(\prod_{i=0}^{\ell-1} (-b_{i}^{-1}x;q)_{\infty} (-b_{i}x^{-1}q;q)_{\infty} \\ \times \prod_{i=\ell}^{n-1} (-b_{i}^{-1}xq;q)_{\infty} (-b_{i}x^{-1};q)_{\infty} \Biggr).$$

This allows us to recover a character formula of Kac–Peterson (1984) and a new expression as a sum of infinite products with obviously positive coefficients.

Jehanne Dousse (UniGE)

Non-specialised character formula for $A_{n-1}^{(1)}$

Combining our new character formula with our generalisation of Primc's identity, we obtain:

Theorem (D.–Konan 2019)

Let $\Lambda_0, \ldots, \Lambda_{n-1}$ be the fundamental weights of $A_{n-1}^{(1)}$. For all $\ell \in \{0, \ldots, n-1\}$, we have

$$\begin{split} e^{-\Lambda_{\ell}} \mathrm{ch}(\mathcal{L}(\Lambda_{\ell})) &= \left(\prod_{i=1}^{n-1} \frac{\left(e^{-i(i+1)\delta}; e^{-i(i+1)\delta}\right)_{\infty}}{(e^{-\delta}; e^{-\delta})_{\infty}}\right) \sum_{\substack{r_{1}, \dots, r_{n-1} \\ r_{0} = r_{n} = 0 \\ 0 \leq r_{j} \leq j-1}} e^{-r_{l}\delta} \prod_{i=1}^{n-1} e^{r_{i}\alpha_{i}} e^{r_{i}(r_{i+1}-r_{i})\delta} \\ &\times \left(-e^{(ir_{i+1}-(i+1)r_{i}-\frac{i(i+1)}{2}-\ell\chi(i\geq l>0))\delta + \sum_{j=1}^{i}j\alpha_{j}}; e^{-i(i+1)\delta}\right)_{\infty} \\ &\times \left(-e^{((i+1)r_{i}-ir_{i+1}-\frac{i(i+1)}{2}+\ell\chi(i\geq l>0))\delta - \sum_{j=1}^{i}j\alpha_{j}}; e^{-i(i+1)\delta}\right)_{\infty} \end{split}$$

Outline

- Basics on affine Lie algebras
- 2 Character formulas
- 3 Crystals and grounded partitions
- 4 Multi-grounded partitions

Multi-grounded partitions

Goal: extend the idea of grounded partitions to treat the cases of crystals where the ground state paths are not constant.

Multi-grounded partitions

Goal: extend the idea of grounded partitions to treat the cases of crystals where the ground state paths are not constant.

Definition

Let C be a set of colors and \succ a binary relation defined on \mathbb{Z}_{C} . Suppose that there exist some colors $c_{g_0}, \ldots, c_{g_{t-1}}$ in C and *unique* coloured integers $u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)}$ such that

$$u^{(0)} + \dots + u^{(t-1)} = 0,$$

$$u^{(0)}_{c_{g_0}} \succ u^{(1)}_{c_{g_1}} \succ \dots \succ u^{(t-1)}_{c_{g_{t-1}}} \succ u^{(0)}_{c_{g_0}}.$$

Then a multi-grounded partition with ground $c_{g_0}, \ldots, c_{g_{t-1}}$ and relation \succ is a finite sequence $\pi = (\pi_0, \cdots, \pi_{s-1}, u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)})$ of coloured integers such that $\pi_i \succ \pi_{i+1}$ for all *i*, and $(\pi_{s-t}, \cdots, \pi_{s-1}) \neq (u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)})$ in terms of coloured integers. The set of these multi-grounded partitions is denoted by $\mathcal{P}_{c_{g_0}}^{\succ} \cdots c_{g_{t-1}}$.

Jehanne Dousse (UniGE)

Example

Take $C = \{c_1, c_2, c_3\}$, $M = \begin{pmatrix} 2 & 2 & 2 \\ 0 & 0 & 2 \\ -2 & 0 & 2 \end{pmatrix}$,

and define the relation \succ on $\mathbb{Z}_{\mathcal{C}}$ by $k_{c_b} \succ k'_{c_{b'}}$ if and only if $k - k' \ge M_{b,b'}$. If we choose $(g_0, g_1) = (1, 3)$, the pair $(u^{(0)}, u^{(1)}) = (1, -1)$ is the unique pair satisfying the conditions

$$u^{(0)} + u^{(1)} = 0,$$

 $u^{(0)}_{c_1} \succ u^{(1)}_{c_3} \succ u^{(0)}_{c_1}$

The sequences $(3_{c_3}, 3_{c_2}, 3_{c_1}, -1_{c_3}, 1_{c_1}, -1_{c_3})$ and $(1_{c_3}, 3_{c_1}, 1_{c_3}, 3_{c_1}, -1_{c_3}, 1_{c_1}, -1_{c_3})$ are multi-grounded partitions with ground c_1, c_3 and relation \succ , $(1_{c_1}, -1_{c_3}, 1_{c_1}, -1_{c_3})$ and $(2_{c_1}, 1_{c_1}, -1_{c_3})$ are not.

Let $\mathcal B$ be a crystal of level ℓ , let λ be a dominant weight, and let

$$\mathfrak{p}_{\lambda} = (g_k)_{k=0}^{\infty} = \cdots \otimes g_{k+1} \otimes g_k \otimes \cdots \otimes g_1 \otimes g_0$$

be the corresponding ground state path. It is always periodic. Let t denote the period of \mathfrak{p}_{λ} , i.e. the smallest positive integer k such that $g_{i+k} = g_i$ for all $i \ge 0$.

Let $\mathcal B$ be a crystal of level ℓ , let λ be a dominant weight, and let

$$\mathfrak{p}_{\lambda} = (g_k)_{k=0}^{\infty} = \cdots \otimes g_{k+1} \otimes g_k \otimes \cdots \otimes g_1 \otimes g_0$$

be the corresponding ground state path. It is always periodic. Let t denote the period of \mathfrak{p}_{λ} , i.e. the smallest positive integer k such that $g_{i+k} = g_i$ for all $i \ge 0$.

Let *H* be an energy function on $\mathcal{B} \otimes \mathcal{B}$, and define

$$H_\lambda(b\otimes b'):=H(b\otimes b')-rac{1}{t}\sum_{k=0}^{t-1}H(g_{k+1}\otimes g_k).$$

Thus we have

$$\sum_{k=0}^{t-1}H_{\lambda}(g_{k+1}\otimes g_k)=0.$$

Let $\mathcal B$ be a crystal of level ℓ , let λ be a dominant weight, and let

$$\mathfrak{p}_{\lambda} = (g_k)_{k=0}^{\infty} = \cdots \otimes g_{k+1} \otimes g_k \otimes \cdots \otimes g_1 \otimes g_0$$

be the corresponding ground state path. It is always periodic. Let t denote the period of \mathfrak{p}_{λ} , i.e. the smallest positive integer k such that $g_{i+k} = g_i$ for all $i \ge 0$.

Let *H* be an energy function on $\mathcal{B} \otimes \mathcal{B}$, and define

$$H_\lambda(b\otimes b'):=H(b\otimes b')-rac{1}{t}\sum_{k=0}^{t-1}H(g_{k+1}\otimes g_k).$$

Thus we have

$$\sum_{k=0}^{t-1}H_{\lambda}(g_{k+1}\otimes g_k)=0.$$

Let D be a positive integer such that $DH_{\lambda}(\mathcal{B} \otimes \mathcal{B}) \subset \mathbb{Z}$ and $\frac{1}{t} \sum_{k=0}^{t-1} (k+1)DH_{\lambda}(g_{k+1} \otimes g_k) \in \mathbb{Z}$.

Jehanne Dousse (UniGE)

Caractères et partitions

Let us define the relations on $\mathbb{Z}_{\mathcal{C}_{\mathcal{B}}}$:

$$k_{c_b} \gg k'_{c_{b'}} \iff k - k' = DH_{\lambda}(b' \otimes b),$$

 $k_{c_b} \gg k'_{c_{b'}} \iff k - k' \ge DH_{\lambda}(b' \otimes b).$

Theorem (D.–Konan 2021)

There is a bijection between the set of λ -paths $\mathcal{P}(\lambda)$ and the set ${}_{t}\mathcal{P}^{\geq}_{c_{g_{0}}\cdots c_{g_{t-1}}}$ of multi-grounded partitions of $\mathcal{P}^{\geq}_{c_{g_{0}}\cdots c_{g_{t-1}}}$ whose number of parts is divisible by t.

Theorem (D.–Konan 2021)

Let ${}^{d}\mathcal{P}$ be the set of partitions where all parts are divisible by d. There is a bijection between ${}_{t}\mathcal{P}_{c_{g_{0}}\cdots c_{g_{t-1}}}^{\gg} \times {}^{d}\mathcal{P}$ and ${}^{d}_{t}\mathcal{P}_{c_{g_{0}}\cdots c_{g_{t-1}}}^{\gg}$, where ${}^{d}_{t}\mathcal{P}_{c_{g_{0}}\cdots c_{g_{t-1}}}^{\gg}$, is the set of $\pi \in {}_{t}\mathcal{P}_{c_{g_{0}}\cdots c_{g_{t-1}}}^{\gg}$ such that for all k, $\pi_{k} - \pi_{k+1} - DH_{\lambda}(p_{k+1} \otimes p_{k}) \in d\mathbb{Z}_{\geq 0}$, where $c(\pi_{k}) = c_{p_{k}}$ and $\pi_{s} = u_{c_{g_{0}}}^{(0)}$.

A general character formula

Theorem (D.–Konan 2021)

Let $L(\lambda)$ be an irreducible highest weight module of weight λ with constant ground state path. Setting $q = e^{-\delta/(d_0D)}$ and $c_b = e^{\overline{wt}b}$ for all $b \in \mathcal{B}$, we have $c_{g_0} \cdots c_{g_{t-1}} = 1$, and the character of the irreducible highest weight module $L(\lambda)$ is given by the following expressions:

$$\sum_{\mu\in_t\mathcal{P}^{\geqslant}_{cg_0}\cdots c_{g_{t-1}}} C(\pi)q^{|\pi|} = e^{-\lambda}\mathrm{ch}(L(\lambda)), \ \sum_{\pi\in rac{d}{t}\mathcal{P}^{\geqslant}_{cg_0}\cdots c_{g_{t-1}}} C(\pi)q^{|\pi|} = rac{e^{-\lambda}\mathrm{ch}(L(\lambda))}{(q^d;q^d)_{\infty}}.$$

Example: character of Λ_0 in $A_{2n-1}^{(2)}(n \ge 3)$

 $\label{eq:Ground state path: } {\mathfrak p}_{\Lambda_0} = \dots \otimes \overline{1} \otimes 1 \otimes \overline{1} \otimes 1 \otimes \overline{1},$

Jehanne Dousse (UniGE)

Example: character of Λ_0 in $A_{2n-1}^{(2)}$ $(n \ge 3)$ We have $H(1 \otimes \overline{1}) + H(\overline{1} \otimes 1) = 0$, so $H_{\Lambda_0} = H$. Example: character of Λ_0 in $A_{2n-1}^{(2)}$ $(n \ge 3)$ We have $H(1 \otimes \overline{1}) + H(\overline{1} \otimes 1) = 0$, so $H_{\Lambda_0} = H$.

We apply our character formula with d = 2 and D = 2 and obtain

$$\sum_{\pi\in\frac{2}{2}\mathcal{P}^\gg_{c_1^{-c_1}}} C(\pi)q^{|\pi|} = \frac{e^{-\Lambda_0}\mathrm{ch}(\mathcal{L}(\Lambda_0))}{(q^2;q^2)_{\infty}},$$

where $q = e^{-\delta/2}$ and $c_b = e^{\overline{\mathrm{wt}}b}$ for all $b \in \mathcal{B}$.

Example: character of Λ_0 in $A_{2n-1}^{(2)}$ $(n \ge 3)$ We have $H(1 \otimes \overline{1}) + H(\overline{1} \otimes 1) = 0$, so $H_{\Lambda_0} = H$.

We apply our character formula with d = 2 and D = 2 and obtain

$$\sum_{\pi\in rac{2}{2}\mathcal{P}^\gg_{c_1^-c_1}} \mathcal{C}(\pi) q^{|\pi|} = rac{e^{-\Lambda_0} \mathrm{ch}(\mathcal{L}(\Lambda_0))}{(q^2;q^2)_\infty},$$

where $q = e^{-\delta/2}$ and $c_b = e^{\overline{\mathrm{wt}} b}$ for all $b \in \mathcal{B}$.

Thus we must compute the generating function for ${}_{2}^{2}\mathcal{P}_{c_{1}c_{1}}^{\gg}$, the set of multi-grounded partitions $\pi = (\pi_{0}, \ldots, \pi_{2s-1}, -1_{c_{1}}, 1_{c_{1}})$ with relation \gg and ground $c_{\overline{1}}, c_{1}$, **having an even number of parts**, such that for all $k \in \{0, \ldots, 2s-1\}$,

$$\pi_k - \pi_{k+1} - 2H(p_{k+1}\otimes p_k) \in 2\mathbb{Z}_{\geq 0},$$

where $c(\pi_k) = c_{p_k}$ and $\pi_{2s} = -1_{c_{\overline{1}}}$.

Multi-grounded partitions

Example: character of Λ_0 in $A_{2n-1}^{(2)}$ $(n \ge 3)$

By the values of H, the condition $\pi_k - \pi_{k+1} - 2H(p_{k+1} \otimes p_k) \in 2\mathbb{Z}_{\geq 0}$, and the fact that $u^{(0)} = -1$, the multi-grounded partitions of ${}_2^2 \mathcal{P}_{c_{\overline{1}}c_1}^{\gg}$ have parts with odd sizes.

Example: character of Λ_0 in $A_{2n-1}^{(2)}$ $(n \ge 3)$

By the values of H, the condition $\pi_k - \pi_{k+1} - 2H(p_{k+1} \otimes p_k) \in 2\mathbb{Z}_{\geq 0}$, and the fact that $u^{(0)} = -1$, the multi-grounded partitions of ${}_2^2 \mathcal{P}_{c_{\overline{1}}c_1}^{\gg}$ have parts with odd sizes.

The relation \gg corresponds to the following partial order on the set of coloured odd integers:

$$\begin{array}{cc} (-1)_{c_{\overline{1}}} \\ 1_{c_1} \end{array} \ll 1_{c_2} \ll \cdots \ll 1_{c_n} \ll 1_{c_{\overline{n}}} \ll \cdots \ll 1_{c_{\overline{2}}} \ll \begin{array}{cc} 1_{c_{\overline{1}}} \\ 3_{c_1} \end{array} \ll 3_{c_2} \ll \cdots .$$

Example: character of Λ_0 in $A_{2n-1}^{(2)}$ $(n \ge 3)$

By the values of H, the condition $\pi_k - \pi_{k+1} - 2H(p_{k+1} \otimes p_k) \in 2\mathbb{Z}_{\geq 0}$, and the fact that $u^{(0)} = -1$, the multi-grounded partitions of ${}_2^2 \mathcal{P}_{c_{\overline{1}}c_1}^{\gg}$ have parts with odd sizes.

The relation \gg corresponds to the following partial order on the set of coloured odd integers:

Only parts coloured c_1 and $c_{\overline{1}}$ can appear several times, in sequences of the form

$$\cdots \ll (2k-1)_{c_{\overline{1}}} \ll (2k+1)_{c_1} \ll (2k-1)_{c_{\overline{1}}} \ll \cdots \ll (2k-1)_{c_{\overline{1}}} \ll \cdots$$

Example: character of Λ_0 in $A_{2n-1}^{(2)}$ $(n \ge 3)$

$$\begin{array}{cc} (-1)_{c_{\overline{1}}} \\ 1_{c_{1}} \end{array} \ll 1_{c_{2}} \ll \cdots \ll 1_{c_{n}} \ll 1_{c_{\overline{n}}} \ll \cdots \ll 1_{c_{\overline{2}}} \ll \begin{array}{c} 1_{c_{\overline{1}}} \\ 3_{c_{1}} \end{array} \ll 3_{c_{2}} \ll \cdots ,$$

where parts coloured c_1 and $c_{\overline{1}}$ can repeat in sequences

$$\cdots \ll (2k-1)_{c_{\overline{1}}} \ll (2k+1)_{c_1} \ll (2k-1)_{c_{\overline{1}}} \ll \cdots \ll (2k-1)_{c_{\overline{1}}} \ll \cdots$$

For fixed $k \ge 1$, sequences of parts coloured c_1 and $c_{\overline{1}}$ are generated by

$$\frac{(1+c_{\overline{1}}q^{2k-1})(1+c_{1}q^{2k+1})}{(1-c_{\overline{1}}c_{1}q^{4k})}.$$

For k = 0, the sequence $(1_{c_1}, (-1)_{c_{\overline{1}}}, 1_{c_1})$ can occur at the end of the partitions grounded in $c_{\overline{1}}, c_1$, but $((-1)_{c_{\overline{1}}}, 1_{c_1}, (-1)_{c_{\overline{1}}}, 1_{c_1})$ cannot. So, if we temporarily forgot the condition on the even number of parts in ${}_2^2 \mathcal{P}^{\gg}_{c_{\overline{1}}c_1}$, the generation function would be

$$(1+c_1q)\cdot rac{(-c_1q^3,-c_{\overline{1}}q,-c_2q,-c_{\overline{2}}q,\ldots,-c_nq,-c_{\overline{n}}q;q^2)_\infty}{(c_{\overline{1}}c_1q^4;q^4)_\infty}.$$

Jehanne Dousse (UniGE)

Example: character of
$$\Lambda_0$$
 in $A^{(2)}_{2n-1}$ $(n \ge 3)$

Observation

$$\sum_{n,k\geq 0} a_{n,k} x^k q^n + \sum_{n,k\geq 0} a_{n,k} (-x)^k q^n = 2 \sum_{n,k\geq 0} a_{n,2k} x^{2k} q^n$$

Thus, the generating function for multi-grounded partitions in ${}^2_2\mathcal{P}^\gg_{c_{\overline{1}}c_1}$ is

$$\sum_{\pi \in \frac{2}{2} \mathcal{P}_{c_{\overline{1}}c_{\overline{1}}}^{\gg}} C(\pi)q^{|\pi|} = \frac{1}{2(c_{\overline{1}}c_{1}q^{4};q^{4})_{\infty}} \left((-c_{1}q, -c_{\overline{1}}q, \dots, -c_{n}q, -c_{\overline{n}}q;q^{2})_{\infty} + (c_{1}q, c_{\overline{1}}q, \dots, c_{n}q, c_{\overline{n}}q;q^{2})_{\infty} \right)$$
$$= \frac{e^{-\Lambda_{0}}\mathrm{ch}(\mathcal{L}(\Lambda_{0}))}{(q^{2};q^{2})_{\infty}},$$
where $\delta = \alpha_{0} + \alpha_{1} + 2\alpha_{2} \dots + 2\alpha_{n-1} + \alpha_{n},$
$$q = e^{-\delta/2} \quad \text{and} \quad c_{i} = e^{\alpha_{i} + \dots + \alpha_{n-1} + \alpha_{n}/2} \text{ for all } i \in \{1, \dots, n\}.$$

Jehanne Dousse (UniGE)

Thank you very much!