Symmetric functions and interacting particle processes

Olya Mandelshtam University of Waterloo

Séminaire Flajolet

February 2, 2023

joint with Arvind Ayyer and James Martin, arXiv:2011.06117, arXiv:2209.09859

- the asymmetric simple exclusion process (ASEP) → combinatorial formula for Macdonald polynomials and some nice specializations
- modified Macdonald polynomials → the multispecies totally asymmetric zero range process (mTAZRP) and observables

exactly solvable interacting particle models

• integrable systems: a class of dynamical systems with a certain restricted structure, in particular making them *solvable*

exactly solvable interacting particle models

- integrable systems: a class of dynamical systems with a certain restricted structure, in particular making them *solvable*
- we are interested in studying integrable systems whose exact solutions (e.g. stationary distributions) can be expressed in terms of combinatorial formulas or special functions (e.g. Macdonald polynomials)

exactly solvable interacting particle models

- integrable systems: a class of dynamical systems with a certain restricted structure, in particular making them *solvable*
- we are interested in studying integrable systems whose exact solutions (e.g. stationary distributions) can be expressed in terms of combinatorial formulas or special functions (e.g. Macdonald polynomials)
- the field was initiated by Spitzer in his 1970 paper where he defined the ASEP (Asymmetric Simple Exclusion Process) and the ZRP (Zero Range Process)

• exclusion process: ≤ 1 particle per site (sites labeled 1, 2, ..., n)

- exclusion process: ≤ 1 particle per site (sites labeled 1, 2, ..., n)
- **boundary conditions:** open boundaries (particles can enter and exit at the boundaries), infinite lattice, periodic boundary (on a circle)

- exclusion process: ≤ 1 particle per site (sites labeled 1, 2, ..., n)
- **boundary conditions:** open boundaries (particles can enter and exit at the boundaries), infinite lattice, periodic boundary (on a circle)
- particle types: particle "species" labeled by integers, larger integers have higher "priority"

single species ASEP

multispecies ASEP

- exclusion process: ≤ 1 particle per site (sites labeled 1, 2, ..., n)
- **boundary conditions:** open boundaries (particles can enter and exit at the boundaries), infinite lattice, periodic boundary (on a circle)
- particle types: particle "species" labeled by integers, larger integers have higher "priority"

 $\underbrace{1} \ \underbrace{1} \ \underbrace{0} \ \underbrace{0} \ \underbrace{1} \ \underbrace{0}$

single species ASEP

multispecies ASEP

 dynamics: any two adjacent particles may swap with some predetermined rate (in our case, fixed by a parameter 0 ≤ t ≤ 1):

 $XABY \xrightarrow{1} XBAY$ and $XBAY \xrightarrow{t} XABY$ for A > B

$$n = 8, \lambda = (3, 2, 2, 2, 1, 0, 0, 0)$$

Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector λ = (λ₁ ≥ · · · ≥ λ_n ≥ 0).

 $n = 8, \lambda = (3, 2, 2, 2, 1, 0, 0, 0)$

$$\alpha = (1, 2, 2, 0, 0, 0, 3, 2) \in \mathsf{ASEP}(\lambda)$$

- Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector λ = (λ₁ ≥ · · · ≥ λ_n ≥ 0).
- ASEP(λ) is a Markov chain whose states are the compositions α ∈ Sym(λ) that are rearrangements of λ (on a circle: α_{n+1} = α₁)

 $n = 8, \lambda = (3, 2, 2, 2, 1, 0, 0, 0)$

$$\alpha = (1, 2, 2, 0, 0, 0, 3, 2) \in \mathsf{ASEP}(\lambda)$$

- Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector λ = (λ₁ ≥ · · · ≥ λ_n ≥ 0).
- ASEP(λ) is a Markov chain whose states are the compositions α ∈ Sym(λ) that are rearrangements of λ (on a circle: α_{n+1} = α₁)
- The transitions are swaps of adjacent particles A > B (fix $0 \le t \le 1$):

$$X \textcircled{B} Y \stackrel{1}{\longleftarrow} X \textcircled{B} \textcircled{A} Y$$

 $n = 8, \lambda = (3, 2, 2, 2, 1, 0, 0, 0)$

$$\alpha = (1, 2, 2, 0, 0, 0, 3, 2) \in \mathsf{ASEP}(\lambda)$$

- Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector λ = (λ₁ ≥ · · · ≥ λ_n ≥ 0).
- ASEP(λ) is a Markov chain whose states are the compositions α ∈ Sym(λ) that are rearrangements of λ (on a circle: α_{n+1} = α₁)
- The transitions are swaps of adjacent particles A > B (fix 0 ≤ t ≤ 1):

$$X \land B Y \stackrel{1}{\longleftarrow} X \land B \land Y$$

For example, ASEP((2, 2, 1, 0)) has 12 states:

 $(2, 2, 1, 0), (2, 1, 2, 0), (2, 1, 0, 2), (2, 2, 0, 1), (2, 0, 2, 1), (2, 0, 1, 2), (0, 2, 2, 1), \cdots$

The transitions from state (2, 1, 2, 0) are:

- (1, 2, 2, 0) with probability t/4 (2, 2, 1, 0) with probability 1/4
- (2,1,0,2) with probability t/4 (0,1,2,2) with probability 1/4

 $n = 8, \lambda = (3, 2, 2, 2, 1, 0, 0, 0)$

$$\alpha = (1, 2, 2, 0, 0, 0, 3, 2) \in \mathsf{ASEP}(\lambda)$$

- Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector λ = (λ₁ ≥ · · · ≥ λ_n ≥ 0).
- ASEP(λ) is a Markov chain whose states are the compositions α ∈ Sym(λ) that are rearrangements of λ (on a circle: α_{n+1} = α₁)
- The transitions are swaps of adjacent particles A > B (fix $0 \le t \le 1$):

$$X \land B Y \stackrel{1}{\longleftarrow} X \land B \land Y$$

For example, ASEP((2, 2, 1, 0)) has 12 states:

 $(2, 2, 1, 0), (2, 1, 2, 0), (2, 1, 0, 2), (2, 2, 0, 1), (2, 0, 2, 1), (2, 0, 1, 2), (0, 2, 2, 1), \cdots$

The transitions from state (2, 1, 2, 0) are:

- (1, 2, 2, 0) with probability t/4
- (2, 1, 0, 2) with probability t/4
- (2, 2, 1, 0) with probability 1/4
 - (0, 1, 2, 2) with probability 1/4
- Goal: compute the stationary probabilities

Example for $\lambda = (2, 1)$ and $\overline{n = 3}$

- the (row stochastic) transition matrix is:

$$\begin{pmatrix} 1 - \frac{2+t}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{t}{3} \\ \frac{t}{3} & 1 - \frac{1+2t}{3} & 0 & \frac{t}{3} & \frac{1}{3} & 0 \\ \frac{t}{3} & 0 & 1 - \frac{1+2t}{3} & \frac{1}{3} & \frac{t}{3} & 0 \\ 0 & \frac{1}{3} & \frac{t}{3} & 1 - \frac{2+t}{3} & 0 & \frac{1}{3} \\ 0 & \frac{t}{3} & \frac{1}{3} & 0 & 1 - \frac{2+t}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{t}{3} & 0 & \frac{t}{3} & 1 - \frac{1+2t}{3} \end{pmatrix}$$

Example for $\lambda = (2, 1)$ and n = 3

- the (row stochastic) transition matrix is:

• the (unnormalized) stationary distribution is:

$$\widetilde{\Pr}((2,1,0)) = \widetilde{\Pr}((1,0,2)) = \widetilde{\Pr}((0,2,1)) = 2 + t$$

$$\widetilde{\Pr}((2,1,0)) = \widetilde{\Pr}((1,0,2)) = \widetilde{\Pr}((0,2,1)) = 1 + 2t$$

Define the partition function of $ASEP(\lambda, n)$:

$$\mathcal{Z}_{\lambda,n}(t) = \sum_{\alpha \in S_n \cdot \lambda} \widetilde{\mathsf{Pr}}(\alpha)(t).$$

Define the partition function of $ASEP(\lambda, n)$:

$$\mathcal{Z}_{\lambda,n}(t) = \sum_{\alpha \in S_n \cdot \lambda} \widetilde{\mathsf{Pr}}(\alpha)(t).$$

Theorem (Cantini-de Gier-Wheeler '15)

The partition function of ASEP(λ , n) is a specialization of the Macdonald polynomial:

 $P_{\lambda}(1,\ldots,1;1,t) = \mathcal{Z}_{\lambda,n}(t)$

Symmetric functions

- Let X = x₁, x₂, · · · be a family of indeterminates, and let Λ = Λ_Q be the algebra of symmetric functions in X over Q
 - $f(x_1, \ldots, x_n) \in \Lambda$ is symmetric if $\forall \pi \in S_n$, $f(x_1, \ldots, x_n) = f(x_{\pi(1)}, \ldots, x_{\pi(n)})$

Symmetric functions

- Let X = x₁, x₂, · · · be a family of indeterminates, and let Λ = Λ_Q be the algebra of symmetric functions in X over Q
 - $f(x_1, \ldots, x_n) \in \Lambda$ is symmetric if $\forall \pi \in S_n$, $f(x_1, \ldots, x_n) = f(x_{\pi(1)}, \ldots, x_{\pi(n)})$
- A has several nice bases: e.g. $\{m_{\lambda}\}, \{e_{\lambda}\}, \{h_{\lambda}\}, \{p_{\lambda}\}, \text{ indexed by partitions } \lambda$. E.g. $m_{(2,1)} = \sum_{i,j} x_i^2 x_j^1 = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \cdots$

Let \langle , \rangle be the standard inner product on Λ . $\{s_{\lambda}\}$ is the unique basis of Λ :

- i. orthogonal with respect to \langle,\rangle
- ii. upper triangular with respect to $\{m_{\lambda}\}$:

$$s_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} c_{\mu\lambda} m_{\mu}$$

where < is with respect to dominance order on partitions.

Symmetric functions

- Let X = x₁, x₂, · · · be a family of indeterminates, and let Λ = Λ_Q be the algebra of symmetric functions in X over Q
 - $f(x_1, \ldots, x_n) \in \Lambda$ is symmetric if $\forall \pi \in S_n$, $f(x_1, \ldots, x_n) = f(x_{\pi(1)}, \ldots, x_{\pi(n)})$
- A has several nice bases: e.g. $\{m_{\lambda}\}, \{e_{\lambda}\}, \{h_{\lambda}\}, \{p_{\lambda}\}, \text{ indexed by partitions } \lambda$. E.g. $m_{(2,1)} = \sum_{i,j} x_i^2 x_j^1 = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \cdots$

Let \langle , \rangle be the standard inner product on Λ . $\{s_{\lambda}\}$ is the unique basis of Λ :

- i. orthogonal with respect to \langle,\rangle
- ii. upper triangular with respect to $\{m_{\lambda}\}$:

$$s_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} c_{\mu\lambda} m_{\mu}$$

where < is with respect to dominance order on partitions.

• $s_{\lambda} = \sum_{\sigma} x^{\sigma}$ where σ 's are semi-standard fillings of the Young diagram of shape λ E.g. $s_{(2,1)} = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 = m_{(2,1)} + m_{(1,1,1)}$ $2 \frac{1}{11}$ $3 \frac{1}{11}$ $2 \frac{1}{12}$ $3 \frac{2}{13}$ $3 \frac{2}{13}$ $3 \frac{2}{23}$ $3 \frac{2}{23}$

• Let $\Lambda = \Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q} :

- Let $\Lambda = \Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q} :
- Macdonald '88 introduced the family of homogeneous symmetric polynomials $\{P_{\lambda}(X; q, t)\}$ in $\Lambda(q, t)$, simultaneously generalizing the Schur polynomials (at q = t = 0), Hall-Littlewood polynomials (at q = 0 or t = 0), and Jack polynomials (at $t = q^{\alpha}$ and $q \to 1$)

- Let $\Lambda = \Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q} :
- Macdonald '88 introduced the family of homogeneous symmetric polynomials $\{P_{\lambda}(X; q, t)\}$ in $\Lambda(q, t)$, simultaneously generalizing the Schur polynomials (at q = t = 0), Hall-Littlewood polynomials (at q = 0 or t = 0), and Jack polynomials (at $t = q^{\alpha}$ and $q \rightarrow 1$)

Let $\langle, \rangle_{q,t}$ be the inner product on $\Lambda(q, t)$. Then $\{P_{\lambda}\}$ is the unique basis of $\Lambda(q, t)$ that is uniquely determined by:

i. orthogonal basis for $\Lambda(q,t)$ with respect to $\langle, \rangle_{q,t}$

ii. upper triangular with respect to $\{m_{\lambda}\}$:

$$P_{\lambda}(X;q,t) = m_{\lambda}(X) + \sum_{\mu < \lambda} c_{\mu\lambda}(q,t)m_{\mu}(X)$$

- Let Λ = Λ_Q(q, t), the algebra of symmetric functions with parameters q, t over Q:
- Macdonald '88 introduced the family of homogeneous symmetric polynomials $\{P_{\lambda}(X; q, t)\}$ in $\Lambda(q, t)$, simultaneously generalizing the Schur polynomials (at q = t = 0), Hall-Littlewood polynomials (at q = 0 or t = 0), and Jack polynomials (at $t = q^{\alpha}$ and $q \to 1$)

Let $\langle, \rangle_{q,t}$ be the inner product on $\Lambda(q, t)$. Then $\{P_{\lambda}\}$ is the unique basis of $\Lambda(q, t)$ that is uniquely determined by:

i. orthogonal basis for $\Lambda(q, t)$ with respect to $\langle, \rangle_{q,t}$

ii. upper triangular with respect to $\{m_{\lambda}\}$:

$$P_{\lambda}(X;q,t) = m_{\lambda}(X) + \sum_{\mu < \lambda} c_{\mu\lambda}(q,t)m_{\mu}(X)$$

Example:

$$P_{(2,1)}(X;q,t) = m_{(2,1)} + \frac{(1-t)(2+q+t+2qt)}{1-qt^2} m_{(1,1,1)}.$$

 Haglund-Haiman-Loehr '04 gave a formula for P_λ as a sum over tableaux with statistics maj and (co)inv:

$$P_{\lambda}(X; q, t) = \sum_{\substack{\sigma \in dg(\lambda) \\ \sigma \text{ non-attacking}}} x^{\sigma} q^{\operatorname{maj}(\sigma)} t^{\operatorname{coinv}(\sigma)} \prod_{u} \frac{1-t}{1-q^{\operatorname{leg}(u)+1} t^{\operatorname{arm}(u)+1}}$$

 Haglund-Haiman-Loehr '04 gave a formula for P_λ as a sum over tableaux with statistics maj and (co)inv:

$$P_{\lambda}(X; q, t) = \sum_{\substack{\sigma \in dg(\lambda) \\ \sigma \text{ non-attacking}}} x^{\sigma} q^{\operatorname{maj}(\sigma)} t^{\operatorname{coinv}(\sigma)} \prod_{u} \frac{1-t}{1-q^{\operatorname{leg}(u)+1} t^{\operatorname{arm}(u)+1}}$$

 Corteel-M-Williams '18: a new formula for P_λ in terms of multiline queues, which also give formulas for the stationary distribution of the ASEP; this was inspired by the result of Cantini-de Gier-Wheeler '15

 a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a n × λ₁ lattice, with λ_i balls in row j.

Angel '08, Ferrari-Martin '07 (t = 0 case), Martin '18 (for $q = x_1 = \cdots = x_n = 1$), Corteel–M–Williams '18 (general)

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a n × λ₁ lattice, with λ'_i balls in row j.
- the pairing determines a labeling

Angel '08, Ferrari-Martin '07 (t = 0 case), Martin '18 (for $q = x_1 = \cdots = x_n = 1$), Corteel–M–Williams '18 (general)

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a n × λ₁ lattice, with λ'_i balls in row j.
- the pairing determines a labeling

Angel '08, Ferrari-Martin '07 (t = 0 case), Martin '18 (for $q = x_1 = \cdots = x_n = 1$), Corteel–M–Williams '18 (general)

The state of a multiline queue is read off the bottom row

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a n × λ₁ lattice, with λ'_i balls in row j.
- the pairing determines a labeling

Angel '08, Ferrari-Martin '07 (t = 0 case), Martin '18 (for $q = x_1 = \cdots = x_n = 1$), Corteel–M–Williams '18 (general)

- The state of a multiline queue is read off the bottom row
- The weight wt(M) of a multiline queue depends on the parameters t, q, x_1, \ldots, x_n :

weight =
$$x_1^2 x_2^2 x_3 x_4^2 x_5 x_6^2 q t^2 \frac{(1-t)^3}{(1-qt^3)^2(1-qt^2)}$$

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a n × λ₁ lattice, with λ'_i balls in row j.
- the pairing determines a labeling

- The state of a multiline queue is read off the bottom row
- The weight wt(M) of a multiline queue depends on the parameters t, q, x_1, \ldots, x_n :

weight =
$$x_1^2 x_2^2 x_3 x_4^2 x_5 x_6^2 q t^2 \frac{(1-t)^3}{(1-qt^3)^2(1-qt^2)}$$

3

• Can be represented by a tableau, where each string is mapped to a column

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a n × λ₁ lattice, with λ'_i balls in row j.
- the pairing determines a labeling

Angel '08, Ferrari-Martin '07 (t = 0 case), Martin '18 (for $q = x_1 = \cdots = x_n = 1$), Corteel–M–Williams '18 (general)

- The state of a multiline queue is read off the bottom row
- The weight wt(M) of a multiline queue depends on the parameters t, q, x_1, \ldots, x_n :

weight =
$$x_1^2 x_2^2 x_3 x_4^2 x_5 x_6^2 q t^2 \frac{(1-t)^3}{(1-qt^3)^2(1-qt^2)}$$

- Can be represented by a tableau, where each string is mapped to a column
- Can be represented by a queueing system and described as a coupled system of 1-ASEPs. The pairing is a projection map onto the n-ASEP.

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state α of the mASEP is

$$\widetilde{\Pr}(\alpha)(t) = \sum_{M \in \mathsf{MLQ}(\alpha)} wt(M)(1, \dots, 1; 1, t)$$

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state α of the mASEP is

$$\widetilde{\mathsf{Pr}}(\alpha)(t) = \sum_{M \in \mathsf{MLQ}(\alpha)} wt(M)(1, \ldots, 1; 1, t)$$

Theorem (Cantini-de Gier-Wheeler '15)

The partition function of ASEP(λ , n) is a specialization of the Macdonald polynomial:

$$P_{\lambda}(1,\ldots,1;1,t) = \mathcal{Z}_{\lambda,n}(t) = \sum_{\alpha \in S_n \cdot \lambda} \widetilde{\mathsf{Pr}}(\alpha)(t).$$

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state α of the mASEP is

$$\widetilde{\mathsf{Pr}}(\alpha)(t) = \sum_{M \in \mathsf{MLQ}(\alpha)} wt(M)(1, \ldots, 1; 1, t)$$

Theorem (Cantini-de Gier-Wheeler '15)

The partition function of ASEP(λ , n) is a specialization of the Macdonald polynomial:

$$P_{\lambda}(1,\ldots,1;1,t) = \mathcal{Z}_{\lambda,n}(t) = \sum_{\alpha \in S_n \cdot \lambda} \widetilde{\mathsf{Pr}}(\alpha)(t).$$

Theorem (Corteel–M–Williams '18)

$$P_{\lambda}(x_1,\ldots,x_n;q,t) = \sum_{M \in \mathsf{MLQ}(\lambda,n)} \mathsf{wt}(M)(x_1,\ldots,x_n;q,t)$$

(also Lenart '09 for λ with distinct parts.)
• at t = 0, the ASEP becomes the TASEP:

• at *t* = 0, the ASEP becomes the TASEP:

• Define the Hall-Littlewood polynomial $P_{\lambda}(X; q) = P_{\lambda}(X; q, 0)$

• at *t* = 0, the ASEP becomes the TASEP:

- Define the Hall-Littlewood polynomial $P_{\lambda}(X;q) = P_{\lambda}(X;q,0)$
- In the multiline queues, pairings become forced.

• at *t* = 0, the ASEP becomes the TASEP:

- Define the Hall-Littlewood polynomial $P_{\lambda}(X;q) = P_{\lambda}(X;q,0)$
- In the multiline queues, pairings become forced.

• at *t* = 0, the ASEP becomes the TASEP:

- Define the Hall-Littlewood polynomial $P_{\lambda}(X;q) = P_{\lambda}(X;q,0)$
- In the multiline queues, pairings become forced.

call MLQ(λ, n) the set of ball arrangements with λ'_j balls in each row j, on a lattice of size n × λ₁. (The labels can be recovered uniquely)

$$M = (\{1, 2, 4, 5, 6\}, \{1, 3, 6\}, \{2, 4\})$$

q = t = 0: Schur polynomials via multiline queues

• at q = 0, the multiline queues are non-wrapping, denote this set by MLQ₀(λ , n):

•		٠		۰	۰
	٠	٠		۰	۰

q = t = 0: Schur polynomials via multiline queues

• at q = 0, the multiline queues are non-wrapping, denote this set by $MLQ_0(\lambda, n)$:

q = t = 0: Schur polynomials via multiline queues

• at q = 0, the multiline queues are non-wrapping, denote this set by $MLQ_0(\lambda, n)$:

 the map MLQ₀(λ) → SSYT(λ) is given by column RSK applied to the row reading word of the multiline queue. (bottom to top, left to right)

Lascoux–Schützenberger charge formula via MLQs

• For a permutation σ , define charge $(\sigma) := maj(rev(\sigma^{-1}))$. For a SSYT τ , charge $(\tau) = charge(rw(\tau))$.

Theorem (Lascoux-Schützenberger,'78)

$$P_{\lambda}(X;q,0) = \sum_{\mu \leq \lambda} K_{\mu'\lambda'}(q) s_{\mu}, \qquad K_{\lambda\mu}(q) = \sum_{Q \in SSYT(\lambda,\mu)} q^{charge(Q)}$$

• Define collapsing procedure ρ (with Jerónimo Valencia '23+):

$$\begin{array}{ccc} \mathsf{MLQ}(\lambda) \longrightarrow & \bigcup_{\mu} \mathsf{MLQ}_0(\mu) \times \mathsf{SSYT}(\mu', \lambda') \\ \\ \mathcal{M} \longrightarrow & (\mathcal{M}_0, \mathcal{Q}) \end{array}$$

• charge(Q) = maj(M) (the q-statistic, keeps track of wrapping pairings)

- can be described using lowering operators on the column reading word of M
- lifting procedure ρ^{-1} can be described using raising operators
- generalizes to a quasisymmetric refinement of K_{λμ}(q).

 $M \in MLQ((6, 4, 2))$

 $M \in MLQ((6, 4, 2))$ maj(M) = 2 + 1 + 3 = 6

 $M \in \mathsf{MLQ}((6, 4, 2))$

 $M \in MLQ((6, 4, 2))$

 $M \in \mathsf{MLQ}((6, 4, 2))$

 $M \in MLQ((6, 4, 2))$ maj(M) = 2 + 1 + 3 = 6

 $M \in MLQ((6, 4, 2))$ maj(M) = 2 + 1 + 3 = 6

5

	4				
	3	6			
	2	2	3	4	
=	1	1	1	2	5

 $M \in MLQ((6, 4, 2))$

$$maj(M) = 2 + 1 + 3 = 6$$

 $\lambda = (6, 4, 2)$ maj(M) = 6

 $\lambda = (4, 3, 2, 2, 1)$ maj $(M_0) = 0$

Lemma

$$\mathsf{RSK}^{\mathit{col}}: \binom{a_1, \ldots, a_n}{b_1, \ldots, b_n} \to \mathsf{SSYT}(\mu') \times \mathsf{SSYT}(\mu)$$

 $\mathsf{RSK}^{col}(\mathsf{rw}(M)) = \mathsf{RSK}^{col}(\mathsf{rw}(\rho(M)))$

 $rw(\rho(M)) = 23456|1235|13|2$

 $\mathsf{rw}(M) = 234|135|23|15|6|2$

Theorem

$$s_{\lambda}s_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}s_{
u}=\sum_{
u}c_{\lambda'\mu'}^{
u'}s_{
u}$$

• Using the collapsing procedure:

$$\mathsf{MLQ}_0(\lambda) imes \mathsf{MLQ}_0(\mu) o \mathsf{MLQ}_0(
u) imes \mathsf{SSYT}^*(
u'/\lambda',\mu)$$

$$M_1 \in \mathsf{MLQ}(\lambda), \qquad \lambda = (4, 2, 1)$$
$$M_2 \in \mathsf{MLQ}(\mu), \qquad \mu = (3, 3, 2)$$

Theorem

$$s_{\lambda}s_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}s_{
u}=\sum_{
u}c_{\lambda'\mu'}^{
u'}s_{
u}$$

• Using the collapsing procedure:

$$\mathsf{MLQ}_0(\lambda) imes \mathsf{MLQ}_0(\mu) o \mathsf{MLQ}_0(
u) imes \mathsf{SSYT}^*(
u'/\lambda',\mu)$$

$$\begin{array}{ll} M_1 \in \mathsf{MLQ}(\lambda), & \lambda = (4,2,1) \\ M_2 \in \mathsf{MLQ}(\mu), & \mu = (3,3,2) \end{array}$$

Theorem

$$s_{\lambda}s_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}s_{
u}=\sum_{
u}c_{\lambda'\mu'}^{
u'}s_{
u}$$

• Using the collapsing procedure:

$$\mathsf{MLQ}_0(\lambda) imes \mathsf{MLQ}_0(\mu) o \mathsf{MLQ}_0(
u) imes \mathsf{SSYT}^*(
u'/\lambda',\mu)$$

Theorem

$$s_\lambda s_\mu = \sum_
u c^
u_{\lambda\mu} s_
u = \sum_
u c^{
u'}_{\lambda'\mu'} s_
u$$

• Using the collapsing procedure:

$$\mathsf{MLQ}_0(\lambda) imes \mathsf{MLQ}_0(\mu) o \mathsf{MLQ}_0(
u) imes \mathsf{SSYT}^*(
u'/\lambda',\mu)$$

Theorem

$$s_\lambda s_\mu = \sum_
u c^
u_{\lambda\mu} s_
u = \sum_
u c^{
u'}_{\lambda'\mu'} s_
u$$

• Using the collapsing procedure:

$$\mathsf{MLQ}_0(\lambda) imes \mathsf{MLQ}_0(\mu) o \mathsf{MLQ}_0(
u) imes \mathsf{SSYT}^*(
u'/\lambda',\mu)$$

Theorem

$$s_\lambda s_\mu = \sum_
u c^
u_{\lambda\mu} s_
u = \sum_
u c^{
u'}_{\lambda'\mu'} s_
u$$

• Using the collapsing procedure:

$$\mathsf{MLQ}_0(\lambda) imes \mathsf{MLQ}_0(\mu) o \mathsf{MLQ}_0(
u) imes \mathsf{SSYT}^*(
u'/\lambda',\mu)$$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X; q, t)$ as a combinatorial version of the P_{λ} 's

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\tilde{H}_{\lambda}(X; q, t)$ as a combinatorial version of the P_{λ} 's

• obtained from a normalized form of $P_{\lambda}(X; q, t)$ by plethystic substitution:

$$\widetilde{H}_{\lambda}(X; q, t) = t^{n(\lambda)} J_{\lambda} \left[\frac{X}{1 - t^{-1}}; q, t^{-1} \right]$$

where J_{λ} is a scalar multiple of P_{λ} .

Example: $\widetilde{H}_{(2,1)}(X;q,t) = m_{(3)} + (1+q+t)m_{(2,1)} + (1+2q+2t+qt)m_{(1,1,1)}$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\tilde{H}_{\lambda}(X; q, t)$ as a combinatorial version of the P_{λ} 's

• obtained from a normalized form of $P_{\lambda}(X; q, t)$ by plethystic substitution:

$$\widetilde{H}_{\lambda}(X; q, t) = t^{n(\lambda)} J_{\lambda} \left[\frac{X}{1 - t^{-1}}; q, t^{-1} \right]$$

where J_{λ} is a scalar multiple of P_{λ} .

Example: $\widetilde{H}_{(2,1)}(X;q,t) = m_{(3)} + (1+q+t)m_{(2,1)} + (1+2q+2t+qt)m_{(1,1,1)}$

$$\widetilde{\mathcal{H}}_{\lambda}(X; \pmb{q}, t) = \sum_{\sigma \in \mathsf{dg}(\lambda)} \pmb{q}^{\mathsf{maj}(\sigma)} t^{\mathsf{inv}(\sigma)} x^{\sigma}$$

 $(\text{recall } P_{\lambda}(X; q, t) = \sum_{\substack{\sigma \in \mathsf{dg}(\lambda) \\ \sigma \text{ non-attacking}}} q^{\mathsf{mai}(\sigma)} t^{\mathsf{coinv}(\sigma)} x^{\sigma} \prod_{u} \frac{1-t}{1-q^{\mathsf{leg}(u)+1} t^{\mathsf{arm}(u)+1}})$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\tilde{H}_{\lambda}(X; q, t)$ as a combinatorial version of the P_{λ} 's

• obtained from a normalized form of $P_{\lambda}(X; q, t)$ by plethystic substitution:

$$\widetilde{H}_{\lambda}(X; q, t) = t^{n(\lambda)} J_{\lambda} \left[\frac{X}{1 - t^{-1}}; q, t^{-1} \right]$$

where J_{λ} is a scalar multiple of P_{λ} .

Example: $\widetilde{H}_{(2,1)}(X;q,t) = m_{(3)} + (1+q+t)m_{(2,1)} + (1+2q+2t+qt)m_{(1,1,1)}$

$$\widetilde{\mathcal{H}}_{\lambda}(X; \pmb{q}, t) = \sum_{\sigma \in \mathsf{dg}(\lambda)} \pmb{q}^{\mathsf{maj}(\sigma)} t^{\mathsf{inv}(\sigma)} x^{\sigma}$$

 $(\text{recall } P_{\lambda}(X; q, t) = \sum_{\sigma \text{ non-attacking}} q^{\text{maj}(\sigma)} t^{\text{coinv}(\sigma)} x^{\sigma} \prod_{u} \frac{1-t}{1-q^{\log(u)+1} t^{\operatorname{arm}(u)+1}})$

• Garbali-Wheeler '20 gave a formula for \widetilde{H}_{λ} using integrability, in terms of colored paths

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X; q, t)$ as a combinatorial version of the P_{λ} 's

• obtained from a normalized form of $P_{\lambda}(X; q, t)$ by plethystic substitution:

$$\widetilde{H}_{\lambda}(X; q, t) = t^{n(\lambda)} J_{\lambda} \left[\frac{X}{1 - t^{-1}}; q, t^{-1} \right]$$

where J_{λ} is a scalar multiple of P_{λ} .

Example: $\widetilde{H}_{(2,1)}(X;q,t) = m_{(3)} + (1+q+t)m_{(2,1)} + (1+2q+2t+qt)m_{(1,1,1)}$

$$\widetilde{\mathcal{H}}_{\lambda}(X; q, t) = \sum_{\sigma \in \mathsf{dg}(\lambda)} q^{\mathsf{maj}(\sigma)} t^{\mathsf{inv}(\sigma)} x^{\sigma}$$

$$(\text{recall } P_{\lambda}(X;q,t) = \sum_{\sigma \text{ non-attacking}} q^{\text{maj}(\sigma)} t^{\text{coinv}(\sigma)} x^{\sigma} \prod_{u} \frac{1-t}{1-q^{\log(v)+1} t^{\operatorname{arm}(v)+1}})$$

- Garbali-Wheeler '20 gave a formula for \widetilde{H}_{λ} using integrability, in terms of colored paths

$$\widetilde{\mathcal{H}}_{\lambda}(X; \pmb{q}, \pmb{t}) = \sum_{\sigma \in \mathsf{dg}(\lambda)} \pmb{q}^{\mathsf{maj}(\sigma)} \pmb{t}^{\mathsf{quinv}(\sigma)} x^{\sigma}$$

From multiline queues to a new formula for \widetilde{H}_{λ}

• $\widetilde{H}_{\lambda}(X; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$\begin{split} \widetilde{H}_{\lambda}(X;q,t) &= t^{n(\lambda)} J_{\lambda} \left[\frac{X}{1-t^{-1}};q,t^{-1} \right] \\ &= f_{\lambda}(q,t) \; P_{\lambda} \left(x_{1}, x_{1}t^{-1}, x_{1}t^{-2}, \dots, x_{2}, x_{2}t^{-1}, x_{2}t^{-2}, \dots; \; q,t^{-1} \right) \end{split}$$

From multiline queues to a new formula for \hat{H}_{λ}

• $\widetilde{H}_{\lambda}(X; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$\begin{split} \widetilde{H}_{\lambda}(X;q,t) &= t^{n(\lambda)} J_{\lambda} \left[\frac{X}{1-t^{-1}};q,t^{-1} \right] \\ &= f_{\lambda}(q,t) \ P_{\lambda} \left(x_{1}, x_{1}t^{-1}, x_{1}t^{-2}, \dots, x_{2}, x_{2}t^{-1}, x_{2}t^{-2}, \dots; q,t^{-1} \right) \end{split}$$

• $P_{\lambda}(x_1, x_1t^{-1}, x_1t^{-2}, \dots, x_2, x_2t^{-1}, x_2t^{-2}, \dots; q, t^{-1})$ should correspond to a multiline queue with countably many columns labeled by

$$x_1, x_1t^{-1}, x_1t^{-2}, \ldots, x_2, x_2t^{-1}, x_2t^{-2}, \ldots$$

From multiline queues to a new formula for H_{λ}

• $\widetilde{H}_{\lambda}(X; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$\begin{split} \widetilde{H}_{\lambda}(X;q,t) &= t^{n(\lambda)} J_{\lambda} \left[\frac{X}{1-t^{-1}};q,t^{-1} \right] \\ &= f_{\lambda}(q,t) \ P_{\lambda} \left(x_{1}, x_{1}t^{-1}, x_{1}t^{-2}, \dots, x_{2}, x_{2}t^{-1}, x_{2}t^{-2}, \dots; q,t^{-1} \right) \end{split}$$

P_λ(x₁, x₁t⁻¹, x₁t⁻²,..., x₂, x₂t⁻¹, x₂t⁻²,...; q, t⁻¹) should correspond to a multiline queue with countably many columns labeled by

$$x_1, x_1t^{-1}, x_1t^{-2}, \ldots, x_2, x_2t^{-1}, x_2t^{-2}, \ldots$$

this leads to a new "queue inversion" statistic for t that we call quiny:

(Corteel-Haglund-M-Mason-Williams '20, Ayyer-M-Martin '21)

From multiline queues to a new formula for \hat{H}_{λ}

• $\widetilde{H}_{\lambda}(X; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$\begin{split} \widetilde{H}_{\lambda}(X;q,t) &= t^{n(\lambda)} J_{\lambda} \left[\frac{X}{1-t^{-1}};q,t^{-1} \right] \\ &= f_{\lambda}(q,t) \ P_{\lambda} \left(x_{1},x_{1}t^{-1},x_{1}t^{-2},\ldots,x_{2},x_{2}t^{-1},x_{2}t^{-2},\ldots;\ q,t^{-1} \right) \end{split}$$

• $P_{\lambda}(x_1, x_1t^{-1}, x_1t^{-2}, \dots, x_2, x_2t^{-1}, x_2t^{-2}, \dots; q, t^{-1})$ should correspond to a multiline queue with countably many columns labeled by

$$x_1, x_1t^{-1}, x_1t^{-2}, \ldots, x_2, x_2t^{-1}, x_2t^{-2}, \ldots$$

this leads to a new "queue inversion" statistic for t that we call quiny:

(Corteel-Haglund-M-Mason-Williams '20, Ayyer-M-Martin '21)

 the resulting objects are of the same flavor as multiline queues, except that multiple balls are allowed at each location. (This translates to removing the "non-attacking" condition from the corresponding tableaux)

Example: $\widetilde{H}_{(2,1)}(X; q, t)$

Example: $\widetilde{H}_{(2,1)}(X; q, t)$

• while the inv and quinv statistics appear very similar, there does not seem to be an easy way to go from one to the other – is there a bijective proof?

Example: $\widetilde{H}_{(2,1)}(X; q, t)$

• while the inv and quinv statistics appear very similar, there does not seem to be an easy way to go from one to the other – is there a bijective proof? Update! Yes there is due to Loehr '22

motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings

motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings

motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings

What is the analogous interacting particle system whose partition function is a specialization of \widetilde{H}_{λ} ?

What is the analogous interacting particle system whose partition function is a specialization of \widetilde{H}_{λ} ?

 continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

simplest case: there are k indistinguishable particles, moving clockwise. A configuration τ = (τ₁,..., τ_n) is any allocation of the k particles on the n sites.

- simplest case: there are k indistinguishable particles, moving clockwise. A configuration τ = (τ₁,..., τ_n) is any allocation of the k particles on the n sites.
- transitions: a particle jumps from site j to site $j + 1 \mod n$ with rate $f(\tau_j)$ for some $f : \mathbb{N} \to \mathbb{R}_+$

- simplest case: there are k indistinguishable particles, moving clockwise. A configuration τ = (τ₁,...,τ_n) is any allocation of the k particles on the n sites.
- transitions: a particle jumps from site j to site $j + 1 \mod n$ with rate $f(\tau_j)$ for some $f : \mathbb{N} \to \mathbb{R}_+$
- multispecies variant: we now allow different particle types, labeled by integers (particles of the same type are still indistinguishable)

- simplest case: there are k indistinguishable particles, moving clockwise. A configuration τ = (τ₁,..., τ_n) is any allocation of the k particles on the n sites.
- transitions: a particle jumps from site j to site $j + 1 \mod n$ with rate $f(\tau_j)$ for some $f : \mathbb{N} \to \mathbb{R}_+$
- multispecies variant: we now allow different particle types, labeled by integers (particles of the same type are still indistinguishable)
- Kuniba-Maruyama-Okado (2015+) (and others) have studied many multispecies variants of the TAZRP. All of these are integrable! The version we will describe was first studied by Takayama '15

the mTAZRP: states

 Fix a (circular 1D) lattice on *n* sites and a partition λ = (λ₁ ≥ · · · ≥ λ_k > 0) for the particle types

n = 5 $\lambda = (4, 3, 3, 2, 2, 1, 1, 1)$ $\tau = (\cdot \mid 321 \mid 422 \mid \cdot \mid 311)$

the mTAZRP: states

- Fix a (circular 1D) lattice on *n* sites and a partition λ = (λ₁ ≥ · · · ≥ λ_k > 0) for the particle types
- TAZRP(λ, n) is a Markov chain whose states are multiset compositions τ of type λ, with n (possibly empty) parts

n = 5 $\lambda = (4, 3, 3, 2, 2, 1, 1, 1)$ $\tau = (\cdot \mid 321 \mid 422 \mid \cdot \mid 311)$

• Each particle is equipped with an exponential clock. Transitions are jumps from site *j* to site *j* + 1

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site j + 1
- The rates depend on a fixed parameter $0 \le t < 1$, and on the content of the site containing the particle

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site j + 1
- The rates depend on a fixed parameter 0 ≤ t < 1, and on the content of the site containing the particle
- For 1 ≤ j ≤ n and k ∈ λ, call f_j(k) the rate of the jump of particle k from site j to site j + 1. If site j has d particles larger than k and c particles of type k, then

$$f_j(k) = x_j^{-1} t^d \sum_{u=0}^{c-1} t^u$$

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site j + 1
- The rates depend on a fixed parameter 0 ≤ t < 1, and on the content of the site containing the particle
- For 1 ≤ j ≤ n and k ∈ λ, call f_j(k) the rate of the jump of particle k from site j to site j + 1. If site j has d particles larger than k and c particles of type k, then

$$f_j(k) = x_j^{-1} t^d \sum_{u=0}^{c-1} t^u$$

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site j + 1
- The rates depend on a fixed parameter 0 ≤ t < 1, and on the content of the site containing the particle
- For 1 ≤ j ≤ n and k ∈ λ, call f_j(k) the rate of the jump of particle k from site j to site j + 1. If site j has d particles larger than k and c particles of type k, then

$$f_j(k) = x_j^{-1} t^d \sum_{u=0}^{c-1} t^u$$

For example: If site j contains the particles $\{4, 3, 3, 1, 1, 1\}$, then:

 $\begin{array}{ll} k = 1: & d = 3, & c = 3, & f_j(1) = x_j^{-1} t^3 (1 + t + t^2). \\ k = 3: & d = 1, & c = 2, & f_j(3) = x_j^{-1} t (1 + t). \\ k = 4: & d = 0, & c = 1, & f_j(4) = x_j^{-1}. \end{array}$

Very similar projection map as for the ASEP.

Given a filling σ, read the state τ ∈ TAZRP(λ, n) from the bottom row of σ as follows:

 τ_j is the multiset $\{\lambda_i : \sigma(1, i) = j\}$

Very similar projection map as for the ASEP.

Given a filling σ, read the state τ ∈ TAZRP(λ, n) from the bottom row of σ as follows:

 τ_j is the multiset $\{\lambda_i : \sigma(1, i) = j\}$

• For example, for $\lambda = (2, 1, 1)$ and n = 3, the following are all the tableaux that correspond to the state $\tau = (21 | \cdot | 1)$:

Theorem (Ayyer–M–Martin '21)

Fix λ , n. The (unnormalized) stationary probability of $\tau \in \mathsf{TAZRP}(\lambda, n)$ is

$$\widetilde{\Pr}(\tau) = \sum_{\substack{\sigma: dg(\lambda) \to [n] \\ \sigma \text{ has type } \tau}} x^{\sigma} t^{quinv(\sigma)}.$$

Corollary

The so-called partition function of $TAZRP(\lambda, n)$ is

$$\mathcal{Z}_{\lambda,n}(x_1,\ldots,x_n;t) = \widetilde{H}_{\lambda}(x_1,\ldots,x_n;1,t).$$

Proof: construction of a Markov chain on tableaux that lumps to the TAZRP.

an example for $\lambda = (2, 1, 1)$ and n = 2

The stationary distribution is:

Example computation for (21 | 1):

the total is: $\widetilde{\Pr}(21|1) = x_1^2 x_2(tx_1 + x_2)(1 + t).$

• The current of particle l across the edge j is defined as the number of particles of type l traversing the edge j per unit of time in the large time limit.

- The current of particle l across the edge j is defined as the number of particles of type l traversing the edge j per unit of time in the large time limit.
- Let us first look at the single species case: $\lambda = (1^m)$ on *n* sites.

Each configuration can be written as a weak composition $\tau = (\tau_1, \ldots, \tau_n)$.

- The current of particle l across the edge j is defined as the number of particles of type l traversing the edge j per unit of time in the large time limit.
- Let us first look at the single species case: $\lambda = (1^m)$ on *n* sites.

Here,
$$n = 5$$
, $m = 7$
 \uparrow \downarrow $\tau = (2, 0, 3, 1, 1)$

Each configuration can be written as a weak composition $\tau = (\tau_1, \dots, \tau_n)$. • The stationary probability of the configuration τ is:

$$\pi(\tau) = \frac{1}{\widetilde{H}_{(1^m)}(x_1,\ldots,x_n;1,t)} \begin{bmatrix} m \\ \tau_1,\ldots,\tau_n \end{bmatrix}_t \prod_{i=1}^n x_i^{\tau_i}$$

- The current of particle l across the edge j is defined as the number of particles of type l traversing the edge j per unit of time in the large time limit.
- Let us first look at the single species case: $\lambda = (1^m)$ on *n* sites.

Here,
$$n = 5$$
, $m = 7$
 \uparrow \downarrow $\tau = (2, 0, 3, 1, 1)$

Each configuration can be written as a weak composition $\tau = (\tau_1, \ldots, \tau_n)$.

• The stationary probability of the configuration τ is:

$$\pi(\tau) = \frac{1}{\widetilde{H}_{(1^m)}(x_1,\ldots,x_n;1,t)} \begin{bmatrix} m \\ \tau_1,\ldots,\tau_n \end{bmatrix}_t \prod_{i=1}^n x_i^{\tau_i}$$

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

$$J = [m]_t \ \frac{\widetilde{H}_{(1^{m-1})}(x_1, \dots, x_n; 1, t)}{\widetilde{H}_{(1^m)}(x_1, \dots, x_n; 1, t)}$$

Theorem (Ayyer-M-Martin '22+)

Let $\lambda = (1^{m_1}, \dots, k^{m_k})$, and let $1 \leq j \leq k$. The current of the particle of type j of the TAZRP of type λ on n sites is given by

$$J = \left[m_j + \dots + m_k\right]_t \frac{\widetilde{H}_{\left(1^{m_j + \dots + m_k - 1}\right)}}{\widetilde{H}_{\left(1^{m_j + \dots + m_k\right)}}} - \left[m_{j+1} + \dots + m_k\right]_t \frac{\widetilde{H}_{\left(1^{m_{j+1} + \dots + m_k - 1}\right)}}{\widetilde{H}_{\left(1^{m_{j+1} + \dots + m_k\right)}}}$$

Densities

- Take TAZRP (λ, n) with content $\lambda = (1^{m_1}, 2^{m_2}, \dots, k^{m_k})$.
- Define z_j^(ℓ) to be the random variable counting the number of particles of type ℓ at site j in a configuration of TAZRP(λ, n).
- Denote the expectation in the stationary distribution by $\langle z_i^{(\ell)} \rangle$.

Theorem (Ayyer-M-Martin '22+)

For $1 \leq \ell \leq k$, the density of the ℓ 'th species at site 1 is given by

$$\langle z_1^{(\ell)} \rangle = x_1 \partial_{x_1} \log \left(\frac{\widetilde{H}_{(1^{m_\ell} + \dots + m_k)}(x_1, \dots, x_n; 1, t)}{\widetilde{H}_{(1^{m_{\ell+1}} + \dots + m_k)}(x_1, \dots, x_n; 1, t)} \right)$$

Densities

- Take TAZRP (λ, n) with content $\lambda = (1^{m_1}, 2^{m_2}, \dots, k^{m_k})$.
- Define z_j^(ℓ) to be the random variable counting the number of particles of type ℓ at site j in a configuration of TAZRP(λ, n).
- Denote the expectation in the stationary distribution by $\langle z_i^{(\ell)} \rangle$.

Theorem (Ayyer-M-Martin '22+)

For $1 \le \ell \le k$, the density of the ℓ 'th species at site 1 is given by

$$\langle z_1^{(\ell)} \rangle = x_1 \partial_{x_1} \log \left(\frac{\widetilde{H}_{(1^{m_\ell + \dots + m_k})}(x_1, \dots, x_n; 1, t)}{\widetilde{H}_{(1^{m_{\ell+1} + \dots + m_k})}(x_1, \dots, x_n; 1, t)} \right)$$

Corollary

$$\langle z_1^{(\ell)} \rangle$$
 is symmetric in the variables $\{x_2, \ldots, x_n\}$.

Fix λ, n, and 0 ≤ ℓ ≤ n, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where μ ⊆ λ.

Local correlations

- Fix λ , n, and $0 \le \ell \le n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ , where $\mu \subseteq \lambda$.
- Let P_{λ,n}(w) be the stationary probability of having exactly the content
 w₁,..., w_ℓ on sites 1,..., ℓ.

- Fix λ, n, and 0 ≤ ℓ ≤ n, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where μ ⊆ λ.
- Let P_{λ,n}(w) be the stationary probability of having exactly the content w₁,..., w_ℓ on sites 1,..., ℓ.
- Example: let λ = (2,2,1,1), n = 4, ℓ = 2, and w = (2|1).
 Configurations contributing to P_{λ,n}(w) are

 $(2|1|12|\cdot), (2|1|1|2), (2|1|2|1), (2|1|\cdot|12)$

- Fix λ , n, and $0 \le \ell \le n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ , where $\mu \subseteq \lambda$.
- Let P_{λ,n}(w) be the stationary probability of having exactly the content
 w₁,..., w_ℓ on sites 1,..., ℓ.
- Example: let λ = (2, 2, 1, 1), n = 4, ℓ = 2, and w = (2|1).
 Configurations contributing to P_{λ,n}(w) are

 $(2|1|12|\cdot), (2|1|1|2), (2|1|2|1), (2|1|\cdot|12)$

Theorem (Ayyer-M-Martin '22)

 $\mathbb{P}_{\lambda,n}(\overline{w})$ is tobsymmetric in the variables $\{x_{\ell+1}, \ldots, x_n\}$.

final remarks

• Explicit bijection from the inv to the quinv statistic?

(recently found by Loehr)

• Can we find a dynamical process that incorporates the q as a parameter?

This seems difficult because

- We lose factorization of \widetilde{H}_{λ}
- We lose translation invariance
- Suitable quasisymmetric version of modified Macdonald polynomials? Nonsymmetric version?

Modified Macdonald polynomials and the multispecies zero range process: arXiv:2011.06117, arXiv:2209.09859