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particle models and symmetric functions

@ the asymmetric simple exclusion process (ASEP) —
combinatorial formula for Macdonald polynomials and some
nice specializations

@ modified Macdonald polynomials — the multispecies totally
asymmetric zero range process (mTAZRP) and observables
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exactly solvable interacting particle models

@ integrable systems: a class of dynamical systems with a certain restricted

structure, in particular making them solvable

@ we are interested in studying integrable systems whose exact solutions (e.g.
stationary distributions) can be expressed in terms of combinatorial formulas or

special functions (e.g. )

@ the field was initiated by Spitzer in his 1970 paper where he defined the ASEP
(Asymmetric Simple Exclusion Process) and the ZRP (Zero Range Process)



Asymmetric Simple Exclusion Process (ASEP)

~ NVl
ee0dd
s N

i

@ exclusion process: < 1 particle per site (sites labeled 1,2,...,n)
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boundary conditions: open boundaries (particles can enter and exit at the
boundaries), infinite lattice, periodic boundary (on a circle)

particle types: particle “species’ labeled by integers, larger integers have higher
“priority”

single species ASEP multispecies ASEP
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exclusion process: < 1 particle per site (sites labeled 1,2,...,n)

boundary conditions: open boundaries (particles can enter and exit at the
boundaries), infinite lattice, periodic boundary (on a circle)

particle types: particle “species’ labeled by integers, larger integers have higher
“priority”

single species ASEP multispecies ASEP

dynamics: any two adjacent particles may swap with some predetermined rate
(in our case, fixed by a parameter 0 < t < 1):

XABY L XBAY and XBAY L XABY for A>B



our setting: ASEP on a circle
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@ Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of
weights: a vector A = (A1 > -+ > A\, > 0).
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weights: a vector A = (A1 > -+ > A\, > 0).
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@ ASEP()) is a Markov chain whose states are the compositions o € Sym(\) that are

rearrangements of A (on a circle: api1 = 1)
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@ Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of
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@ ASEP()) is a Markov chain whose states are the compositions o € Sym(\) that are
rearrangements of A (on a circle: api1 = 1)

@ The transitions are swaps of adjacent particles A > B (fix 0 < t < 1):

XOOY = X®QY



our setting: ASEP on a circle
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@ Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of
weights: a vector A = (A1 > -+ > A\, > 0).

@ ASEP()) is a Markov chain whose states are the compositions o € Sym(\) that are
rearrangements of A (on a circle: api1 = 1)

@ The transitions are swaps of adjacent particles A > B (fix 0 < t < 1):
1
XOOY = X®OOY
@ For example, ASEP((2,2,1,0)) has 12 states:
(27 2: 17 O)a (2’ 17 27 0)7 (27 1’ 07 2)7 (2: 27 0» 1)7 (27 0: 27 1)7 (2’ 07 17 2)7 (07 2’ 27 1)7 e

The transitions from state (2, 1, 2, 0) are:
e (1,2,2,0) with probability t/4 e (2,2,1,0) with probability 1/4
e (2,1,0,2) with probability t/4 e (0,1,2,2) with probability 1/4



our setting: ASEP on a circle
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Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of

weights: a vector A = (A1 > -+ > A\, > 0).

ASEP()) is a Markov chain whose states are the compositions o € Sym(\) that are
rearrangements of A (on a circle: api1 = 1)

The transitions are swaps of adjacent particles A > B (fix 0 < t < 1):
1
XOOY = X®OOY
For example, ASEP((2,2,1,0)) has 12 states:
(27 2: 17 O)a (2’ 17 27 0)7 (27 1’ 07 2)7 (2: 27 0» 1)7 (27 0: 27 1)7 (2’ 07 17 2)7 (07 2’ 27 1)7 e

The transitions from state (2, 1, 2, 0) are:
e (1,2,2,0) with probability t/4 e (2,2,1,0) with probability 1/4
e (2,1,0,2) with probability t/4 e (0,1,2,2) with probability 1/4

Goal: compute the stationary probabilities



Example for A = (2,1) and n =3

@ the elements in the state space are:
Q00 200 20 Q0O

@ the (row stochastic) transition matrix is:
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Example for A = (2,1) and n =3

@ the elements in the state space are:
Q00 200 220 202 ©O2® 0D

@ the (row stochastic) transition matrix is:

e SUNE TR B B
t _ 142t t 1
3 1 3 0 3
t 0 1_1+2t i t
3 3 3 3
0 1 t 1— 24t 0
3 ? 3
0 L 3 0 1— 24t
3 0 3 0 ;s 1

@ the (unnormalized) stationary distribution is:

Pr((2,1,0)) = Pr((1,0,2)) = Pr((0,2,1)) =2 + ¢

Pr((2,1,0)) = Pr((1,0,2)) = Pr((0,2,1)) = 1 + 2¢

_LWIFWI= O O Wi+

wlt

2t



From ASEP to Macdonald polynomials

Define the partition function of ASEP(A, n):

Zaa(t)= D Pr(a)(®).

Q€SN



From ASEP to Macdonald polynomials

Define the partition function of ASEP(A, n):

Zya(t)= > Pr(a)(0).

Q€SN

Theorem (Cantini—de Gier-Wheeler "15)

The partition function of ASEP(), n) is a specialization of the Macdonald polynomial:

Pr(1,...,1;1,1) = 25 a(1)



Symmetric functions

@ Let X =x1,Xz,- -+ be a family of indeterminates, and let A = Ag be the algebra of
symmetric functions in X over Q

o f(x1,...,%y) € Nissymmetric if Vor € Sy, f(X1,...,%,) = f(xw(l), . 7)<7r("))
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symmetric functions in X over Q
o f(x1,...,%y) € Nissymmetric if Vor € Sy, f(X1,...,%,) = f(xw(l), . 7)<7r("))

@ A has several nice bases: e.g. {my}, {ex}, {hr}, {pxr}, indexed by partitions .
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Let (,) be the standard inner product on A. {s.} is the unique basis of A:
i. orthogonal with respect to (, )
ii. upper triangular with respect to {mjy }:

=my + E Cuxmy
<A

where < is with respect to dominance order on partitions.



Symmetric functions

@ Let X =x1,Xz,- -+ be a family of indeterminates, and let A = Ag be the algebra of
symmetric functions in X over Q
o f(x1,...,%y) € Nissymmetric if Vor € Sy, f(X1,...,%,) = f(xw(l), . 7)<7r("))

@ A has several nice bases: e.g. {my}, {ex}, {hr}, {pxr}, indexed by partitions .
Eg mpq) = Z x,.zle = xxo + XExz + XEx3 + X1X2 + X1X2 4 xX0xXZ 4 - - -
isj
Let (,) be the standard inner product on A. {s.} is the unique basis of A:
i. orthogonal with respect to (, )
ii. upper triangular with respect to {mjy }:

=my + E Cuxmy
<A

where < is with respect to dominance order on partitions.

. where o's are semi-standard fillings of the Young diagram of shape A

E.g. = xlzxz + X12X3 + x1x22 + X1 Xx0X3 + X1 X0x3 + x1x§ + X22X3 + X2X§ =
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q = t = 0), Hall-Littlewood polynomials (at ¢ = 0 or t = 0), and Jack polynomials (at
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ii. upper triangular with respect to {mjy }:

Pa(Xiq,t) = ma(X) + Y cua(a, )m,(X)

n<AX



Macdonald polynomials Py(X; g, t)

@ Let A = Ag(q, t), the algebra of symmetric functions with parameters g, t over Q:

@ Macdonald '88 introduced the family of homogeneous symmetric polynomials
{Px(X;q,t)} in A(q, t), simultaneously generalizing the (at
q = t = 0), Hall-Littlewood polynomials (at ¢ = 0 or t = 0), and Jack polynomials (at
t=qg%and g —1)

Let (, )q,¢ be the inner product on A(q, t). Then { Py} is the unique basis of A(q, t)
that is uniquely determined by:

i. orthogonal basis for A(q, t) with respect to (, )q,¢

ii. upper triangular with respect to {mjy }:

Pa(Xiq,t) = ma(X) + Y cua(a, )m,(X)

n<AX

@ Example:
(1 —t)(2+qg+t+2qt)

Pe,y(Xiq,t) = mo 1) + 1 g2

m(1,1,1)-



Combinatorial formulas

@ Haglund-Haiman-Loehr '04 gave a formula for Py as a sum over tableaux with
statistics maj and

o maj(o o 1-1¢
P)\(X; q, t) = Z x°q #i( )t ( )H 1— qleg(u)+1 tarm(u)+1

oedg(N)
o non-attacking




Combinatorial formulas

@ Haglund-Haiman-Loehr '04 gave a formula for Py as a sum over tableaux with
statistics maj and
1—-t

PX(X; q, t) = Z XO'meJ(U)t ) H 1— qleg(u)+1 tarm(u)+1

oedg(N)
o non-attacking

@ Corteel-M-Williams '18: a new formula for Py in terms of multiline queues,
which also give formulas for the stationary distribution of the ASEP; this was

inspired by the result of Cantini-de Gier-Wheeler '15



multiline queues

@ a multiline queue (MLQ) of type A, n is an arrangement and pairing of balls on a n x \;
lattice, with A’ balls in row j.

row 3 O O n=26
row2 (O O O A=(3,3,2,1,1)
row 1 O O O O O A= (27 3, 5)

1 2 3 4 5 6

Angel '08, Ferrari-Martin '07 (t = 0 case), Martin '18 (for g = x; = - - - = x, = 1),
Corteel-M-Williams '18 (general)
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@ a multiline queue (MLQ) of type A, n is an arrangement and pairing of balls on a n x \;
lattice, with A’ balls in row j.

@ the pairing determines a labeling

row 3 (E) n==6 214
6(1]3
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@ Can be represented by a tableau, where each string is mapped to a column



multiline queues

@ a multiline queue (MLQ) of type A, n is an arrangement and pairing of balls on a n x \;
lattice, with A’ balls in row j.

@ the pairing determines a labeling

row 3 (E) n==6 214

row 2 A=(3,3,2,1,1) 613

row 1 (@) (@) A =(2,3,5) 6 (1|5 | ‘
1 2 3 4 5 6 a=(3,1,0,1,2,3)

Angel '08, Ferrari-Martin '07 (t = 0 case), Martin '18 (for g = x; = - - - = x, = 1),
Corteel-M-Williams '18 (general)

@ The state of a multiline queue is read off the bottom row

@ The weight wt(M) of a multiline queue depends on the parameters ¢, g, x1, . .., Xp:

(N

. 2.2 2 2 .2
weight = X] X5 X3X, X5 X5 gt m

@ Can be represented by a tableau, where each string is mapped to a column
@ Can be represented by a queueing system and described as a coupled system of 1-ASEPs.
The pairing is a projection map onto the n-ASEP.



From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state « of the mASEP is

Pria)(t)= > wt(M)(1,...,1;1,1)

MEMLQ(ax)
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From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state « of the mASEP is

Pria)(t) = D> wt(M)(,...,1;1,1)

MEMLQ(ax)

Theorem (Cantini-de Gier—Wheeler '15)

The partition function of ASEP(X, n) is a specialization of the Macdonald polynomial:

PA(L, ..., 1L, 0) = Zxa(t) = D Pr(a)(t).

a€S, A

Theorem (Corteel-M—-Williams '18)

Px(x1,- .., Xni q,t) = Z wt(M)(x1, - - -, Xn; q, t)
MEMLQ(A,n)

(also Lenart '09 for A with distinct parts.)



t = 0: Hall-Littlewood polynomials P,(X; q,0) via
multiline queues

-
@
@ at t = 0, the ASEP becomes the TASEP: ( .
1@ ®



t = 0: Hall-Littlewood polynomials P,(X; q,0) via
multiline queues

@ at t =0, the ASEP becomes the TASEP: @ @

y\s@ @ ~
@ Define the Hall-Littlewood polynomial Py (X; q) = P>\(X q,0)



t = 0: Hall-Littlewood polynomials P,(X; q,0) via

multiline queues
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@ Define the Hall-Littlewood polynomial Py (X; q) = Px(X;q,0)

@ at t =0, the ASEP becomes the TASEP:

@ In the multiline queues, pairings become forced.
O O n==6
O O O A=(3,3,2,1,1)



t = 0: Hall-Littlewood polynomials P,(X; q,0) via

multiline queues
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@ Define the Hall-Littlewood polynomial Py (X; q) = Px(X;q,0)

@ at t =0, the ASEP becomes the TASEP:

@ In the multiline queues, pairings become forced.

n==6

A=(3,3,2,1,1)
@® ® a=(2,1,0,3,1,3)



t = 0: Hall-Littlewood polynomials P,(X; q,0) via

multiline queues
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@ Define the Hall-Littlewood polynomial Py (X; q) = Px(X;q,0)

In the multiline queues, pairings become forced.

® ® n==6
@) B ©) A=(3,3,2,1,1)
@ © ® O 6 a=(21,0,3,1,3)
1 2 3 4 5 6

@ call MLQ(\, n) the set of ball arrangements with )\J’. balls in each row j, on a

lattice of size n X A1. (The labels can be recovered uniquely)

M= ({1,2,4,5,6},{1,3,6},{2,4})
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@ at g = 0, the multiline queues are non-wrapping, denote this set by MLQq(A, n):
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@ at g = 0, the multiline queues are non-wrapping, denote this set by MLQq(A, n):
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[efe] T [o]o[ T] [e[ o[ | [e[e] T | [e] Te[ | [ [ Te] [e[e[ [ | [e[ [e[ | [ Tefe[ |
[ofe[ [ | [o] [of | [of [of | [o] [ [@] [o] | [o] [o] [ [o] [ [e[e[ | [ [ee] | [ [e[e] |
2]2 3 3[3 3 4la 213 33 33
11 1)1 1 1 1)1 1)1 12 12 2
[oe] T | [o] [o] | [of [ [o] [ [ee[ | [ Je] Te] [e]e] [ | [o] [o[ | [e[ [ [e] [ Tele] |
[le[ Te] [To[ o] o[ o] o] o] [Je [e| [ | [e]e] [ [ [e[e] [[ [e]e] [ [e]e]
2[4 4la 3[4 4la 4 3[4 4la 3[4

12 2|2 3[3 13 13 1]3 23

@ the map MLQg(X) — SSYT(]) is given by column RSK applied to the row
reading word of the multiline queue. (bottom to top, left to right)



Lascoux—Schutzenberger charge formula via MLQs

e For a permutation o, define charge(c) := maj(rev(c—1)). For a SSYT 7,
charge(7) = charge(rw(T)).

Theorem (Lascoux—Schiitzenberger,'78)

AX0,.0)= D Kun(@su,  Kaulg)= > ghoreel@
HEA QESSYT(A, 1)

@ Define collapsing procedure p (with Jerénimo Valencia '23+):
MLQ(N) — UMLQo(r) x SSYT(1/, X)
n
M — (Mo, Q)

charge(Q) = maj(M) (the g-statistic, keeps track of wrapping pairings)

can be described using lowering operators on the column reading word of M

-1

lifting procedure p~* can be described using raising operators

generalizes to a quasisymmetric refinement of K, (q).



Collapsing procedure

M € MLQ((6, 4, 2))

row 6
maj(M) =2+1+3=6
[

row 5

e e
oe

row 3

row 2 7.“ ? e Q _ @

row 1 ‘ ‘ .

1 2 3 4 5 6



Collapsing procedure

M € MLQ((6, 4, 2))

6
o b maj(M) =2+1+3=6
row 5 .
row 4 . .
row 3 [ AN )
ow2 | @ ° °
Q=

row 1 . . .

1 2 3 4 5 6



Collapsing procedure

M € MLQ((6, 4, 2))

6
o b maj(M) =2+1+3=6
row 5 .
row 4 . .
row 3 [ AN ) 5
row 2 . .
Q= [1]1]1]2]

row 1 . . . [ )

1 2 3 4 5 6



Collapsing procedure

M € MLQ((6, 4, 2))

row 6 [ ]

row 5 .

row 4 . .

row 3

w2 @ @

row 1 .
2

maj(M) =2+1+3=6

»—nww‘
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Collapsing procedure

M € MLQ((6, 4, 2))

row 6 [ ]

row 5 .

row 4 .

row 3

w2 @ @

row 1 .
2

maj(M) =2+1+3=6




Collapsing procedure

M € MLQ((6, 4, 2))

row 6 [ ]

row 5

row 4 .

row 3

w2 @ @
row 1 .
2

maj(M) =2+1+3=6

v 00 e
» @

© @@
o @



Collapsing procedure

M € MLQ((6, 4, 2))

row 6
maj(M) =2+1+3=6

row 5 —

( X 4
row 4 I

3

row 3 (]

00 ® 212 4
row 2

Q= |1|1|1]|2]5

row 1 0000

1 2 3 4 5 6



Collapsing procedure

M € MLQ((6, 4, 2))

row 6
maj(M) =2+1+3=6
row 5 T
row 4 . 3 6
™ |98 2[2[3]4
row 2 . . . .
Q= |1|1|1]|2]5

row 1 0000

1 2 3 4 5 6



Collapsing procedure

M € MLQ((6, 4, 2))

row 8 maj(M) =2+1+3=6
L (4] Mo € MLQo((4,3,2,2,1))
R A 316 charge(Q) = charge(4]36|2234|11125)
i | @ 2121314 = charge(436215) + charge(3412) + charge(21)
oz | @ I Q= 111111215 =24 (1+43)40
row 1 . .

Q € SSYT(1/, \)



Collapsing procedure

M € MLQ((6, 4, 2))

row 6
maj(M) =2+1+3=6
row 5 —
4 Mo € MLQo((4,3,2,2,1))
row 4 » )
316 charge(Q) = charge(4|36]|2234|11125)
row3 @
2121314 = charge(436215) + charge(3412) + charge(21)
row 2 .
Q= 111111215 =24 (1+43)40
row 1 .
Q € SSYT(u/, \')
1 2 3 4 5 6

(4]
L 4 L, 3|6
°
ot Sed o PR
B ° oo
A= (6,4,2) A= (4,3,2,2,1) charge(Q) =6

maj(M) =6 maj(Mp) =0



Collapsing procedure

Lemma

RSK<! ; (al’ e 3") 5 SSYT (1) x SSYT (1)

bi,..., bn

RSKCOI(FW(M)) = RSKCOI(rW(p(M))

l—ll\)wU'IO\‘
=N~ ]|O

:41 T

rw(M) = 234[13523[15(6]2  rw(p(M)) = 23456|1235|13|2




Littlewood-Richardson rule via MLQs

v Ul
SASp = E CxpsSv = E Cx/ ! Sv
v v

@ Using the collapsing procedure:

MLQg(A) X MLQq(t) — MLQq(v) x SSYT*(v/ /N, 1)

My € MLQ()), A=(4,2,1)

:Z . ° : . My e MLQ(p), 1 =(3,3,2)
row 1 ([ 2N BN J

s @

row 2 [ BN ]

@ SSYT*(v'/X, ') is the set of Yamanouchi fillings of /)’ with content u/
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v Ul
SASp = E CxpsSv = E Cx/ ! Sv
v v

@ Using the collapsing procedure:

MLQg(A) X MLQq(t) — MLQq(v) x SSYT*(v/ /N, 1)

My € MLQ()), A=(4,2,1)

row 3 [ A )

M, € MLQ(), =(3,3,2
w2 | @ ) ° 2 (1), = )
il | 088 3]
row3 @ >
row 2 [ 3K ) o= 111 ‘ 1 ‘

owl @ @ @ [ ]
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Littlewood-Richardson rule via MLQs

v Ul
SASp = E CxpsSv = E Cx/ ! Sv
v v

@ Using the collapsing procedure:

MLQg(A) X MLQq(t) — MLQq(v) x SSYT*(v/ /N, 1)

My € MLQ()), A=(4,2,1)

row 3 [ A )

M, € ML , = ,2
el el Te > EMLQ(), 1= (3.3.2)
row 1 . .

T 31
row3 @ [ )
® Py 2121
row 2 (
Q=111 1‘1‘

wl @ @ ® 0 @

@ SSYT*(v'/X, ') is the set of Yamanouchi fillings of /)’ with content u/



Littlewood-Richardson rule via MLQs

v Ul
SASp = E CxpsSv = E Cx/ ! Sv
v v

@ Using the collapsing procedure:

MLQg(A) X MLQq(t) — MLQq(v) x SSYT*(v/ /N, 1)

My € MLQ()), A=(4,2,1)

row 3 [ A )
i My e MLQ(n),  p=(3,3,2)
. 2|2

owl @ [}

_— 312
row3 | @ [ ) [ ]
row 2 T X ) 21211

Q= |1]1]1]1 ‘ 1 ‘

wl @ @ @ @ @

@ SSYT*(v'/X, ') is the set of Yamanouchi fillings of /)’ with content u/



Littlewood-Richardson rule via MLQs

v Ul
SASp = E CxpsSv = E Cx/ ! Sv
v v

@ Using the collapsing procedure:

MLQg(A) X MLQq(t) — MLQq(v) x SSYT*(v/ /N, 1)

My € MLQ()), A=(4,2,1)

row 3

i . 3] My € MLQ(n), 4= (3,3,2)
: 20213
row 1 Lii__ 3112
row3 @ [ ) [ ) PR
eee® o [i[1[1]1]

wl @ @ @ @ @

@ SSYT*(v'/X, ') is the set of Yamanouchi fillings of /)’ with content u/



Littlewood-Richardson rule via MLQs

v Ul
SASp = E CxpsSv = E Cx/ ! Sv
v v

@ Using the collapsing procedure:

MLQg(A) X MLQq(t) — MLQq(v) x SSYT*(v/ /N, 1)

My € MLQ()), A=(4,2,1)

row 3 —

i . My € MLQ(r),  p=(3.3,2)
wieee 22 2 M e MLQ(v), v=(54,411)
row3 @ [ [ ] I Q € SSYT*(v/ /N, i)
row 2 o0 o0

a- 4]

wl @ @ @ @ @

@ SSYT*(v'/X, ') is the set of Yamanouchi fillings of /)’ with content u/
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Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by I:IA(X; q,t)
as a combinatorial version of the P)'s

@ obtained from a normalized form of Py (X;q, t) by
~ X
. _ #n(X) . —1
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modified Macdonald polynomials Hy (X g, t)

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by I:IA(X; q,t)
as a combinatorial version of the P)'s

@ obtained from a normalized form of Py (X;q, t) by
~ X
Hy(X:q,t) = "My | —2—iq,t7!
A(Xiq,t) M@

where Jy is a scalar multiple of P, .
Example: Hip 1)(X: g, t) = m(3) + (1+ g+ t)mez 1y + (1 +2q + 2t + gt)my 1 1y

@ Haglund-Haiman-Loehr '04 also gave a formula for H, as a sum over tableaux with
statistics maj and

Hy (X;q,t) Z g ) o

o Edg(A)

(recall PA(X;q,t) =3 seqgn) G It T, W)

o non-attacking
@ Garbali-Wheeler '20 gave a formula for FI,\ using integrability, in terms of colored paths

@ Corteel-Haglund-M-Mason-Williams '20 conjecture: a new formula for H, with maj and a
new statistic quinv:

Ay (X: q, t) Z grai(e) gauind(@) o

oedg()



From multiline queues to a new formula for H,

] FIA(X; g, t) is obtained from the integral form of Py via plethysm:

~ X
Hx(X;q,t) = " gy {1 4, ]

=1f(q, 1) PA(XI:XI Jxat X, Xt xet Ty g, )



From multiline queues to a new formula for H,
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From multiline queues to a new formula for H,

] FIA(X; g, t) is obtained from the integral form of Py via plethysm:

~ X
Fr(X: q, 1) = ")y [—;q, ]

1—
=fa(q,1) PA(XI;XI y it Ty xe et xet T, q, )
@ Py(x1,x , X1 Sy XD, XD , X2 s 4, )should correspond to a

multiline queue with countably many columns labeled by

-2 -2

-1 -1
X, xit T, xat T, ..., X0, Xt T, xot

@ this leads to a new “queue inversion” statistic for ¢ that we call quinv:
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(Corteel-Haglund—M-Mason-Williams '20, Ayyer—-M—Martin '21)
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From multiline queues to a new formula for H,

] FIA(X; g, t) is obtained from the integral form of Py via plethysm:
~ X
Hx(X;q,t) = tn(A)J/\ [17 q, ]

=1f(q, 1) PA(XI:XI Jxat X, Xt xet Ty g, )

@ Py(x1,x , X1 Sy XD, XD , X2 s 4, ) should correspond to a
multiline queue with countably many columns labeled by

2 -2

-1 - -1
X, xit T, xat T, ..., X0, Xt T, xot

@ this leads to a new “queue inversion” statistic for ¢ that we call quinv:

(Corteel-Haglund—M-Mason-Williams '20, Ayyer—-M—Martin '21)

Vs

@ the resulting objects are of the same flavor as multiline queues, except that multiple balls
are allowed at each location. (This translates to removing the “non-attacking” condition

from the corresponding tableaux)



Example: H21)(X; q,

Hio,1)(x1, %23 G, ) = m(ay + (1 + t + q)mz,1) + (1 + 2t + 29 + qt)m 1 1)

o (AMM21) AXian= Y g
o:dg(N)—Zy

2] [q] 2] [
1] [1]2] II II s[a] [a]2]
m3 q ma1 tmay tmi qmi qt muy tm miiy q mii1
o (HHLO4) Ha(Xig.t)= > qril@)niolye
o:dg(N)—Z,
2 1 1 1 2 3 2 1 3
11 11 12 21 2 3 1 3 12 31 3 2 21

ms qmz m21 tm2 muy qm qm tm tmu qt min



Example: ﬁ(gil)(X; q,t)

Hio,1)(x1, %23 G, ) = m(ay + (1 + t + q)mz,1) + (1 + 2t + 29 + qt)m 1 1)

o (AMM21) AGa = 3 g i)
o:dg(N)—Zy
2] [1] 2] [1]
1] [1]2] II II s[a] [a]2]
m3 q ma1 tmay tmi qmi qt muy tm miiy q mii1
o (HHLO4) Ha(Xig.t)= > qril@)niolye
o:dg(A)—Zy
2 1 1 1 2 3 2 1 3
11 11 12 21 2 3 1 3 12 31 3 2 21
ms qma1 ma1 tmy mi q mi q mi tmin tmi qt M

e while the inv and quinv statistics appear very similar, there does not seem to be an

easy way to go from one to the other — is there a bijective proof?



Example: ﬁ(gil)(X; q,t)

Hio,1)(x1, %23 G, ) = m(ay + (1 + t + q)mz,1) + (1 + 2t + 29 + qt)m 1 1)

o (AMM21) AXian= Y g
o:dg(N)—Zy

2] [1] 2] [1]
1] [z Il B8 0 [
m3 q ma1 tmay tmi qmi qt muy tm miiy q mii1
o (HHLO4) Ha(Xig.t)= > qril@)niolye
o:dg(A)—Zy
2 1 1 1 2 3 2 1 3
11 11 12 21 2 3 1 3 12 31 3 2 21
ms qma1 ma1 tmy mi q mi q mi tmin tmi qt M

e while the inv and quinv statistics appear very similar, there does not seem to be an
easy way to go from one to the other — is there a bijective proof? Update! Yes there
is due to Loehr '22



motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of
lattice paths/strings

I —
o L '
. e .,?_..4.__

2 4

o

N|lw|= ][N N ‘

N | DN




motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of
lattice paths/strings

T T S

_us

o

(2]
2|2
1)1 — Z’ﬁ "“'—'“"':;’
3|4 B
2|2 1] 1 @ {.?

1 2 4

“plethystic version” of certain
non-attacking fillings
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motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of
lattice paths/strings

5 [
] — e r——— e
2 ..-—’(_
212 ’j—J
11 — Z’/._ "‘ ""‘":;’
3|4 = —
! -’?
2|2 1 ‘ [
1 2 4
“plethystic version” of certain “plethystic version” of

non-attacking fillings multiline queues

1

queue inversion skipped particle



stat mech/probability:
ASEP (exclusion)
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What is the analogous interacting particle system whose partition
function is a specialization of H,?



stat mech/probability:
ASEP (exclusion)

TAZRP (zero range)

N

symmetric functions: combinatorics:
Macdonald polynomials P multiline queues

h

modified Macdonald H, tableaux with quinv

What is the analogous interacting particle system whose partition
function is a specialization of H,?
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totally asymmetric zero range processes (TAZRP)

@ continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary

graphs. In our case, we have a circular lattice with n sites.
/ 2,2 \
1 Here, n =5, k=7
K j r=(22]-]331]2]1)
1

=

@ simplest case: there are k indistinguishable particles, moving clockwise. A
configuration 7 = (71, ..., 7y) is any allocation of the k particles on the n sites.

@ transitions: a particle jumps from site j to site j +1 mod n with rate f(7;) for
some f : N — R,

@ multispecies variant: we now allow different particle types, labeled by integers
(particles of the same type are still indistinguishable)

@ Kuniba—Maruyama—Okado (2015+) (and others) have studied many

multispecies variants of the TAZRP. All of these are integrable! The version we
will describe was first studied by Takayama '15



the mTAZRP: states

@ Fix a (circular 1D) lattice on n sites and a partition A = (A1 > -+ > A\ > 0) for
the particle types

N
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n=5
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,K \/ T=(-|321]422| - |311)
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the mTAZRP: states

@ Fix a (circular 1D) lattice on n sites and a partition A = (A1 > -+ > A\ > 0) for
the particle types

@ TAZRP(A, n) is a Markov chain whose states are multiset compositions T of

type A, with n (possibly empty) parts

N

31,1 32,1

n=5

A=(4,3,3,2,2,1,1,1)

,K \/ T=(-|321]422| - |311)

1] 4,2,2
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the mTAZRP: transition rates

@ Each particle is equipped with an exponential clock. Transitions are jumps from

site j to site j + 1

@ The rates depend on a fixed parameter 0 < t < 1, and on the content of the

site containing the particle

@ For1<j<nandk € ) call fi(k) the rate of the jump of particle k from site j
to site j+ 1. If site j has d particles larger than k and c particles of type k, then

c—1
F(k)=x 71t/ S e

u=0

For example: If site j contains the particles {4,3,3,1,1,1}, then:

k=1 d =3, c=3, (1) =x"E1+t+ 1)
k=3: d=1, c=2, fi(3) = x 't(1+1).
k=4 d=0, c=1, fi(4)=x"
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Lumping of tableaux to mTAZRP

Very similar projection map as for the ASEP.

@ Given a filling o, read the state from the
bottom row of o as follows:

is the multiset {\; : 0(1,/) =/}

e For example, for A = (2,1,1) and n = 3, the following are all
the tableaux that correspond to the state 7 = ( 21 ! . | 1 ):
(1] 2] 3] (1] 2] 3]
1[1]3]) [1][a]3] [1]a]3] [1]3]1] [1]3]1] [1]3]1]




TAZRP probabilities and tableaux

Theorem (Ayyer—-M-Martin '21)

Fix X\, n. The (unnormalized) stationary probability of T € TAZRP (X, n) is

Fr(r)= S xerin@),

o:dg(X\)—[n]
o has type T

Corollary

The so-called partition function of TAZRP(X, n) is

Zxn(Xt, -y Xmi ) = HA(X1, -+ xni 1, B).

Proof: construction of a Markov chain on tableaux that lumps to the TAZRP.



an example for A =(2,1,1) and n = 2

The stationary distribution is:

211 | ) X3 (x1 + x2)
X12X2(t2X2 + x1)

x1x22(t2x1 + x2)
x3(x1 + x2)

Example computation for (21 | 1 ):

1

the total is:

2

N
1[1]2]

2

Pr(21]1) = x2x(tx1 + x0)(1 + t).

2)

1) | xPxe(ta +x)(1+t)
21 ) | x1x3(x1 + bo)(1+t)
11)
1)

© ot 1 © ot
1[1]2] 1[2]1]

o1
2]1]
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of type ¢ traversing the edge j per unit of time in the large time limit.

@ Let us first look at the single species case: A = (1™) on n sites.

./ N Here, n=5 m=7
\ 1 r=(2,0,3,1,1)
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Each configuration can be written as a weak composition 7 = (71,...,7a).

@ The stationary probability of the configuration 7 is:

1 n
w(T) = = [
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Current

@ The current of particle £ across the edge j is defined as the number of particles
of type ¢ traversing the edge j per unit of time in the large time limit.

@ Let us first look at the single species case: A = (1™) on n sites.

./ N Here, n=5 m=7
\ 1 r=(2,0,3,1,1)
. F—- e o o
Each configuration can be written as a weak composition 7 = (71,...,7a).

@ The stationary probability of the configuration 7 is:

1 m < T
() = ﬁ(lm)(X1,.-.,Xn;1,t) |:7'17~~~77'n:| HX,'

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

ﬁ,,., Xiy ...y Xnm 1, t
= [m]t ’(} 1)( 1 )
H(lm)(Xl,...,X,,;].,t)




Theorem (Ayyer-M-Martin '22+)
Let A= (1™,..., k™), and let 1 < j < k. The current of the particle of type j of the
TAZRP of type X\ on n sites is given by

g(lmﬁ”'“"k*l g(lmj+1+4~+mk71)

J=[mj+...+mk]t _[mj+1+"’+mk]t

H(1m1+---+mk) H(lmj'.1+"-+mk)



BDEIES

@ Take TAZRP(A, n) with content A = (1™ ,2M2 . k™),

@ Define zj.(é) to be the random variable counting the number of particles of type /
at site j in a configuration of TAZRP(A, n).

@ Denote the expectation in the stationary distribution by <zjm>.

Theorem (Ayyer-M-Martin '22+)
For 1 < ¢ < k, the density of the {'th species at site 1 is given by

(249) = x18, og ( Hlamee om0, i 1,) )
0 log [ |

H(lmk‘1+«~+rnk)(X17 ceey Xn, 1, t)




@ Take TAZRP(A, n) with content A = (1™ ,2M2 . k™),

@ Define zj.(é) to be the random variable counting the number of particles of type /
at site j in a configuration of TAZRP(A, n).

@ Denote the expectation in the stationary distribution by <zj([)>.

Theorem (Ayyer-M-Martin '22+)

For 1 < ¢ < k, the density of the {'th species at site 1 is given by

<z£2)> . Xlax |0g H(lme+"'+mk)(xl, we oy Xn; 1, t)
= 3 — .
H(1m£‘1+“*+mk)(X17 ey Xn 1, t)

Corollary

(zy)) is symmetric in the variables {xo,...,Xxn}.
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Local correlations

@ Fix \,n, and 0 < /¢ < n, and let w be a configuration of the TAZRP on the first
{ sites of type p, where pp C .

@ Let Py ,(w) be the stationary probability of having the content

Wi,...,wp onsites 1,...,¢.

@ Example: let A =(2,2,1,1), n=4, £ =2, and w = (2|1).
Configurations contributing to Py ,(w) are

(21[121),  (2IA[2),  (2[12]1),  (2[1]-[12)



Local correlations

@ Fix \,n, and 0 < /¢ < n, and let w be a configuration of the TAZRP on the first
{ sites of type p, where pp C .

@ Let Py ,(w) be the stationary probability of having exactly the content

Wi,...,wp onsites 1,...,¢.

@ Example: let A =(2,2,1,1), n=4, £ =2, and w = (2|1).
Configurations contributing to Py ,(w) are

(21[121),  (2IA[2),  (2[12]1),  (2[1]-[12)

Theorem (Ayyer-M-Martin '22)

Py ,n(W) is tcbsymmetric in the variables {Xgi1,...,Xn}.



final remarks

Vs

(recently found by Loehr)

@ Can we find a dynamical process that incorporates the ¢ as a parameter?

This seems difficult because

@ We lose factorization of ﬁ,\

@ We lose translation invariance

@ Suitable quasisymmetric version of modified Macdonald polynomials?
Nonsymmetric version?



Modified Macdonald polynomials and the multispecies zero range process:
arXiv:2011.06117, arXiv:2209.09859



