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particle models and symmetric functions

1 the asymmetric simple exclusion process (ASEP) →
combinatorial formula for Macdonald polynomials and some
nice specializations

2 modified Macdonald polynomials → the multispecies totally
asymmetric zero range process (mTAZRP) and observables



exactly solvable interacting particle models

integrable systems: a class of dynamical systems with a certain restricted

structure, in particular making them solvable

we are interested in studying integrable systems whose exact solutions (e.g.

stationary distributions) can be expressed in terms of combinatorial formulas or

special functions (e.g. Macdonald polynomials)

the field was initiated by Spitzer in his 1970 paper where he defined the ASEP

(Asymmetric Simple Exclusion Process) and the ZRP (Zero Range Process)
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Asymmetric Simple Exclusion Process (ASEP)

1t β

δ

α

γ

exclusion process: ≤ 1 particle per site (sites labeled 1, 2, . . . , n)

boundary conditions: open boundaries (particles can enter and exit at the

boundaries), infinite lattice, periodic boundary (on a circle)

particle types: particle “species” labeled by integers, larger integers have higher

“priority”

1 1 0 0 1 0

single species ASEP

2 1 3 0 1 2

multispecies ASEP

dynamics: any two adjacent particles may swap with some predetermined rate

(in our case, fixed by a parameter 0 ≤ t ≤ 1):

XABY
1−→ XBAY and XBAY

t−→ XABY for A > B
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our setting: ASEP on a circle
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n = 8, λ = (3, 2, 2, 2, 1, 0, 0, 0)

α = (1, 2, 2, 0, 0, 0, 3, 2) ∈ ASEP(λ)

Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of

weights: a vector λ = (λ1 ≥ · · · ≥ λn ≥ 0).

ASEP(λ) is a Markov chain whose states are the compositions α ∈ Sym(λ) that are

rearrangements of λ (on a circle: αn+1 = α1)

The transitions are swaps of adjacent particles A > B (fix 0 ≤ t ≤ 1):

A B B AX Y X Y
1

t

For example, ASEP((2, 2, 1, 0)) has 12 states:

(2, 2, 1, 0), (2, 1, 2, 0), (2, 1, 0, 2), (2, 2, 0, 1), (2, 0, 2, 1), (2, 0, 1, 2), (0, 2, 2, 1), · · ·

The transitions from state (2, 1, 2, 0) are:

• (1, 2, 2, 0) with probability t/4 • (2, 2, 1, 0) with probability 1/4

• (2, 1, 0, 2) with probability t/4 • (0, 1, 2, 2) with probability 1/4

Goal: compute the stationary probabilities
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Example for λ = (2, 1) and n = 3

the elements in the state space are:
2 1 0 2 0 1 1 2 0 1 0 2 0 2 1 0 1 2

the (row stochastic) transition matrix is:

1− 2+t
3

1
3

1
3 0 0 t

3
t
3 1− 1+2t

3 0 t
3

1
3 0

t
3 0 1− 1+2t

3
1
3

t
3 0

0 1
3

t
3 1− 2+t

3 0 1
3

0 t
3

1
3 0 1− 2+t

3
1
3

1
3 0 t

3 0 t
3 1− 1+2t

3



the (unnormalized) stationary distribution is:

P̃r((2, 1, 0)) = P̃r((1, 0, 2)) = P̃r((0, 2, 1)) = 2 + t

P̃r((2, 1, 0)) = P̃r((1, 0, 2)) = P̃r((0, 2, 1)) = 1 + 2t
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From ASEP to Macdonald polynomials

Define the partition function of ASEP(λ, n):

Zλ,n(t) =
∑

α∈Sn·λ

P̃r(α)(t).

Theorem (Cantini–de Gier–Wheeler ’15)

The partition function of ASEP(λ, n) is a specialization of the Macdonald polynomial:

Pλ(1, . . . , 1; 1, t) = Zλ,n(t)
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Symmetric functions

Let X = x1, x2, · · · be a family of indeterminates, and let Λ = ΛQ be the algebra of

symmetric functions in X over Q
• f (x1, . . . , xn) ∈ Λ is symmetric if ∀π ∈ Sn , f (x1, . . . , xn) = f (xπ(1), . . . , xπ(n))

Λ has several nice bases: e.g. {mλ}, {eλ}, {hλ}, {pλ}, indexed by partitions λ.

E.g. m(2,1) =
∑
i,j

x2
i x

1
j = x2

1 x2 + x2
1 x3 + x2

2 x3 + x1x
2
2 + x1x

2
3 + x2x

2
3 + · · ·

Let 〈, 〉 be the standard inner product on Λ. {sλ} is the unique basis of Λ:

i. orthogonal with respect to 〈, 〉

ii. upper triangular with respect to {mλ}:

sλ = mλ +
∑
µ<λ

cµλmµ

where < is with respect to dominance order on partitions.

• sλ =
∑
σ
xσ where σ’s are semi-standard fillings of the Young diagram of shape λ

E.g. s(2,1) = x2
1 x2 + x2

1 x3 + x1x
2
2 + x1x2x3 + x1x2x3 + x1x

2
3 + x2

2 x3 + x2x
2
3 = m(2,1) + m(1,1,1)

2

1 1

3

1 1

2

1 2

3

1 2

2

1 3

3

1 3

3

2 2

3

2 3
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Macdonald polynomials Pλ(X ; q, t)

Let Λ = ΛQ(q, t), the algebra of symmetric functions with parameters q, t over Q:

Macdonald ’88 introduced the family of homogeneous symmetric polynomials

{Pλ(X ; q, t)} in Λ(q, t), simultaneously generalizing the Schur polynomials (at

q = t = 0), Hall-Littlewood polynomials (at q = 0 or t = 0), and Jack polynomials (at

t = qα and q → 1)

Let 〈, 〉q,t be the inner product on Λ(q, t).Then {Pλ} is the unique basis of Λ(q, t)

that is uniquely determined by:

i. orthogonal basis for Λ(q, t) with respect to 〈, 〉q,t

ii. upper triangular with respect to {mλ}:

Pλ(X ; q, t) = mλ(X ) +
∑
µ<λ

cµλ(q, t)mµ(X )

Example:

P(2,1)(X ; q, t) = m(2,1) +
(1− t)(2 + q + t + 2qt)

1− qt2
m(1,1,1).
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Combinatorial formulas

Haglund-Haiman-Loehr ’04 gave a formula for Pλ as a sum over tableaux with

statistics maj and (co)inv:

Pλ(X ; q, t) =
∑

σ∈dg(λ)
σ non-attacking

xσqmaj(σ)tcoinv(σ)
∏
u

1− t

1− qleg(u)+1tarm(u)+1

Corteel-M-Williams ’18: a new formula for Pλ in terms of multiline queues,

which also give formulas for the stationary distribution of the ASEP; this was

inspired by the result of Cantini-de Gier-Wheeler ’15
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multiline queues

a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a n × λ1

lattice, with λ′j balls in row j .

the pairing determines a labeling

row 1

row 2

row 3

1 2 3 4 5 6

3 3

3 2 3

3 1 1 2 3

n = 6

λ = (3, 3, 2, 1, 1)

λ′ = (2, 3, 5)

α = (3, 1, 0, 1, 2, 3)

2 4

6 1 3

6 1 5 2 3

Angel ’08, Ferrari-Martin ’07 (t = 0 case), Martin ’18 (for q = x1 = · · · = xn = 1),

Corteel–M–Williams ’18 (general)

The state of a multiline queue is read off the bottom row

The weight wt(M) of a multiline queue depends on the parameters t, q, x1, . . . , xn:

weight = x2
1 x

2
2 x3x

2
4 x5x

2
6qt

2 (1− t)3

(1− qt3)2(1− qt2)

Can be represented by a tableau, where each string is mapped to a column

Can be represented by a queueing system and described as a coupled system of 1-ASEPs.

The pairing is a projection map onto the n-ASEP.
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From ASEP to Macdonald polynomials

Theorem (Martin ’18, Corteel-M-Williams ’18)

The (unnormalized) stationary probability of state α of the mASEP is

P̃r(α)(t) =
∑

M∈MLQ(α)

wt(M)(1, . . . , 1; 1, t)

Theorem (Cantini–de Gier–Wheeler ’15)

The partition function of ASEP(λ, n) is a specialization of the Macdonald polynomial:

Pλ(1, . . . , 1; 1, t) = Zλ,n(t) =
∑

α∈Sn·λ

P̃r(α)(t).

Theorem (Corteel–M–Williams ’18)

Pλ(x1, . . . , xn; q, t) =
∑

M∈MLQ(λ,n)

wt(M)(x1, . . . , xn; q, t)

(also Lenart ’09 for λ with distinct parts.)
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t = 0: Hall-Littlewood polynomials Pλ(X ; q, 0) via
multiline queues

at t = 0, the ASEP becomes the TASEP:
2

2
1

2

3

0
0

0

1
t 1

t1

Define the Hall-Littlewood polynomial Pλ(X ; q) = Pλ(X ; q, 0)

In the multiline queues, pairings become forced.

1 2 3 4 5 6

3 3

2 3 3

2 1 3 1 3

n = 6

λ = (3, 3, 2, 1, 1)

α = (2, 1, 0, 3, 1, 3)

call MLQ(λ, n) the set of ball arrangements with λ′j balls in each row j , on a

lattice of size n × λ1. (The labels can be recovered uniquely)

M = ({1, 2, 4, 5, 6}, {1, 3, 6}, {2, 4})
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q = t = 0: Schur polynomials via multiline queues

at q = 0, the multiline queues are non-wrapping, denote this set by MLQ0(λ, n):

∑
M∈MLQ0(λ,n)

xM = sλ

2 2

1 1

2 3

1 1

3 3

1 1

2 4

1 1

3 4

1 1

4 4

1 1

2 3

1 2

3 3

1 2

3 3

2 2

2 4

1 2

3 4

1 2

4 4

1 2

3 4

2 2

4 4

3 3

2 4

1 3

3 4

1 3

4 4

1 3

3 4

2 3

4 4

2 3

4 4

3 3

the map MLQ0(λ)→ SSYT(λ) is given by column RSK applied to the row

reading word of the multiline queue. (bottom to top, left to right)
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Lascoux–Schützenberger charge formula via MLQs

• For a permutation σ, define charge(σ) := maj(rev(σ−1)). For a SSYT τ ,

charge(τ) = charge(rw(τ)).

Theorem (Lascoux–Schützenberger,’78)

Pλ(X ; q, 0) =
∑
µ≤λ

Kµ′λ′ (q)sµ, Kλµ(q) =
∑

Q∈SSYT(λ,µ)

qcharge(Q)

Define collapsing procedure ρ (with Jerónimo Valencia ’23+):

MLQ(λ) −→
⋃
µ

MLQ0(µ)× SSYT(µ′, λ′)

M −→ (M0,Q)

charge(Q) = maj(M) (the q-statistic, keeps track of wrapping pairings)

can be described using lowering operators on the column reading word of M

lifting procedure ρ−1 can be described using raising operators

generalizes to a quasisymmetric refinement of Kλµ(q).



Collapsing procedure

row 1

row 2

row 3

row 4

row 5

row 6

1 2 3 4 5 6

Q =∅

row 1
1 1 1

row 2

2

2 2
row 3

3

3
row 4

4

4
row 5

5

row 6

6

M0 ∈ MLQ0((4, 3, 2, 2, 1))

charge(Q) = charge(4|36|2234|11125)

= charge(436215) + charge(3412) + charge(21)

= 2 + (1 + 3) + 0

Q ∈ SSYT(µ′, λ′)

M ∈ MLQ((6, 4, 2))

maj(M) = 2 + 1 + 3 = 6

λ = (6, 4, 2)

maj(M) = 6

ρ

λ = (4, 3, 2, 2, 1)

maj(M0) = 0

5

4

4

3

3

2

2 2

1 1 1

6

charge(Q) = 6

,
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Collapsing procedure

Lemma

RSKcol :
(a1, . . . , an
b1, . . . , bn

)
→ SSYT(µ′)× SSYT(µ)

RSKcol(rw(M)) = RSKcol(rw(ρ(M))

and
RSKcol

6

5 5

3 4

2 2 3

1 1 2 3

rw(M) = 234|135|23|15|6|2 rw(ρ(M)) = 23456|1235|13|2



Littlewood-Richardson rule via MLQs

Theorem

sλsµ =
∑
ν

cνλµsν =
∑
ν

cν
′
λ′µ′sν

Using the collapsing procedure:

MLQ0(λ)×MLQ0(µ)→ MLQ0(ν)× SSYT∗(ν′/λ′, µ)

row 1

row 2

row 3

row 1

row 2

row 3

Q = ∅

row 1

row 2

row 3

1 1 1 1

2 2

3

M1 ∈ MLQ(λ), λ = (4, 2, 1)

M2 ∈ MLQ(µ), µ = (3, 3, 2)

M ∈ MLQ(ν), ν = (5, 4, 4, 1, 1)

Q ∈ SSYT∗(ν′/λ′, µ′)

1 1 1 1

2 2

3
row 1

1

1

1

row 2

2 2

2

row 3

3

3

SSYT∗(ν′/λ′, µ′) is the set of Yamanouchi fillings of ν′/λ′ with content µ′
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modified Macdonald polynomials H̃λ(X ; q, t)

Garsia and Haiman ’96 introduced the modified Macdonald polynomials, denoted by H̃λ(X ; q, t)

as a combinatorial version of the Pλ’s

obtained from a normalized form of Pλ(X ; q, t) by plethystic substitution:

H̃λ(X ; q, t) = tn(λ)Jλ

[
X

1− t−1
; q, t−1

]
where Jλ is a scalar multiple of Pλ.

Example: H̃(2,1)(X ; q, t) = m(3) + (1 + q + t)m(2,1) + (1 + 2q + 2t + qt)m(1,1,1)

Haglund-Haiman-Loehr ’04 also gave a formula for H̃λ as a sum over tableaux with

statistics maj and (co)inv:

H̃λ(X ; q, t) =
∑

σ∈dg(λ)

qmaj(σ)t inv(σ)xσ

(recall Pλ(X ; q, t) =
∑

σ∈dg(λ)
σ non-attacking

qmaj(σ)tcoinv(σ)xσ
∏

u
1−t

1−qleg(u)+1tarm(u)+1 )

Garbali-Wheeler ’20 gave a formula for H̃λ using integrability, in terms of colored paths

Corteel-Haglund-M-Mason-Williams ’20 conjecture: a new formula for H̃λ with maj and a

new statistic quinv:

H̃λ(X ; q, t) =
∑

σ∈dg(λ)

qmaj(σ)tquinv(σ)xσ
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From multiline queues to a new formula for H̃λ

H̃λ(X ; q, t) is obtained from the integral form of Pλ via plethysm:

H̃λ(X ; q, t) = tn(λ)Jλ

[
X

1− t−1
; q, t−1

]
= fλ(q, t) Pλ

(
x1, x1t

−1
, x1t

−2
, . . . , x2, x2t

−1
, x2t

−2
, . . . ; q, t−1

)

Pλ
(
x1, x1t

−1, x1t
−2, . . . , x2, x2t

−1, x2t
−2, . . . ; q, t−1

)
should correspond to a

multiline queue with countably many columns labeled by

x1, x1t
−1
, x1t

−2
, . . . , x2, x2t

−1
, x2t

−2
, . . .

this leads to a new “queue inversion” statistic for t that we call quinv:

x

y

z· · ·

vs

x

y z· · ·

(Corteel–Haglund–M–Mason–Williams ’20, Ayyer–M–Martin ’21)

the resulting objects are of the same flavor as multiline queues, except that multiple balls

are allowed at each location. (This translates to removing the “non-attacking” condition

from the corresponding tableaux)
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Example: H̃(2,1)(X ; q, t)

H̃(2,1)(x1, x2; q, t) = m(3) + (1 + t + q)m(2,1) + (1 + 2t + 2q + qt)m(1,1,1)

• (AMM21) H̃λ(X ; q, t) =
∑

σ:dg(λ)→Z+

qmaj(σ)tquinv(σ)xσ
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m3 q m21 t m21 m21 t m111 q m111 qt m111 t m111 m111 q m111

• (HHL04) H̃λ(X ; q, t) =
∑

σ:dg(λ)→Z+

qmaj(σ)t inv(σ)xσ
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1
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• while the inv and quinv statistics appear very similar, there does not seem to be an

easy way to go from one to the other – is there a bijective proof? Update! Yes there

is due to Loehr ’22



Example: H̃(2,1)(X ; q, t)

H̃(2,1)(x1, x2; q, t) = m(3) + (1 + t + q)m(2,1) + (1 + 2t + 2q + qt)m(1,1,1)

• (AMM21) H̃λ(X ; q, t) =
∑

σ:dg(λ)→Z+

qmaj(σ)tquinv(σ)xσ

1

1 1

2

1 1

1

1 2

1

2 1

1

2 3

2

1 3

3

1 2

2

3 1

1

3 2

3

2 1

m3 q m21 t m21 m21 t m111 q m111 qt m111 t m111 m111 q m111

• (HHL04) H̃λ(X ; q, t) =
∑

σ:dg(λ)→Z+

qmaj(σ)t inv(σ)xσ

1

1 1

2

1 1

1

1 2

1

2 1

1

2 3

2

1 3

3

1 2

2

3 1

1

3 2

3

2 1

m3 q m21 m21 t m21 m111 q m111 q m111 t m111 t m111 qt m111

• while the inv and quinv statistics appear very similar, there does not seem to be an

easy way to go from one to the other – is there a bijective proof?

Update! Yes there

is due to Loehr ’22



Example: H̃(2,1)(X ; q, t)

H̃(2,1)(x1, x2; q, t) = m(3) + (1 + t + q)m(2,1) + (1 + 2t + 2q + qt)m(1,1,1)

• (AMM21) H̃λ(X ; q, t) =
∑

σ:dg(λ)→Z+

qmaj(σ)tquinv(σ)xσ

1

1 1

2

1 1

1

1 2

1

2 1

1

2 3

2

1 3

3

1 2

2

3 1

1

3 2

3

2 1

m3 q m21 t m21 m21 t m111 q m111 qt m111 t m111 m111 q m111

• (HHL04) H̃λ(X ; q, t) =
∑

σ:dg(λ)→Z+

qmaj(σ)t inv(σ)xσ

1

1 1

2

1 1

1

1 2

1

2 1

1

2 3

2

1 3

3

1 2

2

3 1

1

3 2

3

2 1

m3 q m21 m21 t m21 m111 q m111 q m111 t m111 t m111 qt m111

• while the inv and quinv statistics appear very similar, there does not seem to be an

easy way to go from one to the other – is there a bijective proof? Update! Yes there

is due to Loehr ’22



motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of

lattice paths/strings

2

2 2

1 1

3 4 3

2 2 4 1

3

4 1

1

3 4

“plethystic version” of certain
non-attacking fillings ←→ “plethystic version” of

multiline queues

queue inversion ←→ skipped particle
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Big picture

stat mech/probability:
ASEP (exclusion)

symmetric functions:
Macdonald polynomials Pλ

combinatorics:
multiline queues

tableaux with quinvmodified Macdonald H̃λ

?

TAZRP (zero range)

What is the analogous interacting particle system whose partition
function is a specialization of H̃λ?
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totally asymmetric zero range processes (TAZRP)

continuous-time stochastic processes (Spitzer ’70), can be defined on arbitrary

graphs. In our case, we have a circular lattice with n sites.

• •

•

• • • •

• •

•

• • • •

2, 2

1

2 3, 3, 1

∅ Here, n = 5, k = 7

τ = ( 11
∣∣ · ∣∣ 111

∣∣ 1
∣∣ 1 )τ = ( 2, 2

∣∣ · ∣∣ 3, 3, 1
∣∣ 2
∣∣ 1 )

simplest case: there are k indistinguishable particles, moving clockwise. A

configuration τ = (τ1, . . . , τn) is any allocation of the k particles on the n sites.

transitions: a particle jumps from site j to site j + 1 mod n with rate f (τj ) for

some f : N→ R+

multispecies variant: we now allow different particle types, labeled by integers

(particles of the same type are still indistinguishable)

Kuniba–Maruyama–Okado (2015+) (and others) have studied many

multispecies variants of the TAZRP. All of these are integrable! The version we

will describe was first studied by Takayama ’15
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the mTAZRP: states

Fix a (circular 1D) lattice on n sites and a partition λ = (λ1 ≥ · · · ≥ λk > 0) for

the particle types

TAZRP(λ, n) is a Markov chain whose states are multiset compositions τ of

type λ, with n (possibly empty) parts

∅

3,1,1

∅ 4,2,2

3,2,1
n = 5

λ = (4, 3, 3, 2, 2, 1, 1, 1)

τ =
(
·
∣∣ 321

∣∣ 422
∣∣ · ∣∣ 311

)
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the mTAZRP: transition rates

Each particle is equipped with an exponential clock. Transitions are jumps from

site j to site j + 1

The rates depend on a fixed parameter 0 ≤ t < 1, and on the content of the

site containing the particle

For 1 ≤ j ≤ n and k ∈ λ, call fj (k) the rate of the jump of particle k from site j

to site j + 1. If site j has d particles larger than k and c particles of type k, then

fj (k) = x−1
j td

c−1∑
u=0

tu

For example: If site j contains the particles {4, 3, 3, 1, 1, 1}, then:

k = 1 : d = 3, c = 3, fj (1) = x−1
j t3(1 + t + t2).

k = 3 : d = 1, c = 2, fj (3) = x−1
j t(1 + t).

k = 4 : d = 0, c = 1, fj (4) = x−1
j .
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Lumping of tableaux to mTAZRP

Very similar projection map as for the ASEP.

Given a filling σ, read the state τ ∈ TAZRP(λ, n) from the
bottom row of σ as follows:

τj is the multiset {λi : σ(1, i) = j}

For example, for λ = (2, 1, 1) and n = 3, the following are all
the tableaux that correspond to the state τ =

(
21
∣∣ · ∣∣ 1

)
:

1
1 1 3

2
1 1 3

3
1 1 3

1
1 3 1

2
1 3 1

3
1 3 1
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TAZRP probabilities and tableaux

Theorem (Ayyer–M–Martin ’21)

Fix λ, n. The (unnormalized) stationary probability of τ ∈ TAZRP(λ, n) is

P̃r(τ) =
∑

σ:dg(λ)→[n]
σ has type τ

xσtquinv(σ).

Corollary

The so-called partition function of TAZRP(λ, n) is

Zλ,n(x1, . . . , xn; t) = H̃λ(x1, . . . , xn; 1, t).

Proof: construction of a Markov chain on tableaux that lumps to the TAZRP.



an example for λ = (2, 1, 1) and n = 2

The stationary distribution is:(
211

∣∣ · ) x3
1 (x1 + x2)(

11
∣∣ 2
)

x2
1x2(t2x2 + x1)(

21
∣∣ 1
)

x2
1x2(tx1 + x2)(1 + t)(

1
∣∣ 21

)
x1x

2
2 (x1 + tx2)(1 + t)(

2
∣∣ 11

)
x1x

2
2 (t2x1 + x2)(

·
∣∣ 211

)
x3

2 (x1 + x2)

Example computation for
(

21
∣∣ 1
)
:

1
1 1 2

: t2, 2
1 1 2

: t, 1
1 2 1

: t, 2
1 2 1

: 1

the total is: P̃r(21|1) = x2
1x2(tx1 + x2)(1 + t).



Current

The current of particle ` across the edge j is defined as the number of particles

of type ` traversing the edge j per unit of time in the large time limit.

Let us first look at the single species case: λ = (1m) on n sites.

• •

•

• • • •

• •

•

• • • •

Here, n = 5, m = 7

τ = (2, 0, 3, 1, 1)

Each configuration can be written as a weak composition τ = (τ1, . . . , τn).

The stationary probability of the configuration τ is:

π(τ) =
1

H̃(1m)(x1, . . . , xn; 1, t)

[ m

τ1, . . . , τn

]
t

n∏
i=1

xτii

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

J = [m]t
H̃(1m−1)(x1, . . . , xn; 1, t)

H̃(1m)(x1, . . . , xn; 1, t)
.
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Current

Theorem (Ayyer-M-Martin ’22+)

Let λ = (1m1 , . . . , kmk ), and let 1 ≤ j ≤ k. The current of the particle of type j of the

TAZRP of type λ on n sites is given by

J =
[
mj + · · ·+ mk

]
t

H̃(
1mj +···+mk−1

)
H̃(1mj +···+mk )

−
[
mj+1 + · · ·+ mk

]
t

H̃(
1mj+1+···+mk−1

)
H̃(1mj+1+···+mk )



Densities

Take TAZRP(λ, n) with content λ = (1m1 , 2m2 , . . . , kmk ).

Define z(`)
j to be the random variable counting the number of particles of type `

at site j in a configuration of TAZRP(λ, n).

Denote the expectation in the stationary distribution by 〈z(`)
j 〉.

Theorem (Ayyer-M-Martin ’22+)

For 1 ≤ ` ≤ k, the density of the `’th species at site 1 is given by

〈z(`)
1 〉 = x1∂x1 log

(
H̃(1m`+···+mk )(x1, . . . , xn; 1, t)

H̃(1m`+1+···+mk )(x1, . . . , xn; 1, t)

)
.

Corollary

〈z(`)
1 〉 is symmetric in the variables {x2, . . . , xn}.
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Local correlations

Fix λ, n, and 0 ≤ ` ≤ n, and let w be a configuration of the TAZRP on the first

` sites of type µ, where µ ⊆ λ.

Let Pλ,n(w) be the stationary probability of having exactly the content

w1, . . . ,w` on sites 1, . . . , `.

Example: let λ = (2, 2, 1, 1), n = 4, ` = 2, and w = (2|1).

Configurations contributing to Pλ,n(w) are

(2|1|12|·), (2|1|1|2), (2|1|2|1), (2|1| · |12)

Theorem (Ayyer-M-Martin ’22)

Pλ,n(w) is tcbsymmetric in the variables {x`+1, . . . , xn}.
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final remarks

Explicit bijection from the inv to the quinv statistic?

x

y

z· · ·

vs

x

y z· · ·

(recently found by Loehr)

Can we find a dynamical process that incorporates the q as a parameter?

This seems difficult because

We lose factorization of H̃λ
We lose translation invariance

Suitable quasisymmetric version of modified Macdonald polynomials?

Nonsymmetric version?
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