Symmetric functions and interacting particle processes

Olya Mandelshtam
University of Waterloo

Séminaire Flajolet

February 2, 2023
joint with Arvind Ayyer and James Martin, arXiv:2011.06117, arXiv:2209.09859

particle models and symmetric functions

(1) the asymmetric simple exclusion process (ASEP) \rightarrow combinatorial formula for Macdonald polynomials and some nice specializations
(2) modified Macdonald polynomials \rightarrow the multispecies totally asymmetric zero range process (mTAZRP) and observables

exactly solvable interacting particle models

- integrable systems: a class of dynamical systems with a certain restricted structure, in particular making them solvable

exactly solvable interacting particle models

- integrable systems: a class of dynamical systems with a certain restricted structure, in particular making them solvable
- we are interested in studying integrable systems whose exact solutions (e.g. stationary distributions) can be expressed in terms of combinatorial formulas or special functions (e.g. Macdonald polynomials)

exactly solvable interacting particle models

- integrable systems: a class of dynamical systems with a certain restricted structure, in particular making them solvable
- we are interested in studying integrable systems whose exact solutions (e.g. stationary distributions) can be expressed in terms of combinatorial formulas or special functions (e.g. Macdonald polynomials)
- the field was initiated by Spitzer in his 1970 paper where he defined the ASEP (Asymmetric Simple Exclusion Process) and the ZRP (Zero Range Process)

Asymmetric Simple Exclusion Process (ASEP)

- exclusion process: ≤ 1 particle per site (sites labeled $1,2, \ldots, n$)

Asymmetric Simple Exclusion Process (ASEP)

- exclusion process: ≤ 1 particle per site (sites labeled $1,2, \ldots, n$)
- boundary conditions: open boundaries (particles can enter and exit at the boundaries), infinite lattice, periodic boundary (on a circle)

Asymmetric Simple Exclusion Process (ASEP)

- exclusion process: ≤ 1 particle per site (sites labeled $1,2, \ldots, n$)
- boundary conditions: open boundaries (particles can enter and exit at the boundaries), infinite lattice, periodic boundary (on a circle)
- particle types: particle "species" labeled by integers, larger integers have higher "priority"

single species ASEP
multispecies ASEP

Asymmetric Simple Exclusion Process (ASEP)

- exclusion process: ≤ 1 particle per site (sites labeled $1,2, \ldots, n$)
- boundary conditions: open boundaries (particles can enter and exit at the boundaries), infinite lattice, periodic boundary (on a circle)
- particle types: particle "species" labeled by integers, larger integers have higher "priority"

single species ASEP
multispecies ASEP
- dynamics: any two adjacent particles may swap with some predetermined rate (in our case, fixed by a parameter $0 \leq t \leq 1$):

$$
X A B Y \xrightarrow{1} X B A Y \quad \text { and } \quad X B A Y \xrightarrow{t} X A B Y \quad \text { for } \quad A>B
$$

our setting: ASEP on a circle

$$
n=8, \quad \lambda=(3,2,2,2,1,0,0,0)
$$

- Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right)$.

our setting: ASEP on a circle

$$
\begin{gathered}
n=8, \quad \lambda=(3,2,2,2,1,0,0,0) \\
\alpha=(1,2,2,0,0,0,3,2) \in \operatorname{ASEP}(\lambda)
\end{gathered}
$$

- Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right)$.
- $\operatorname{ASEP}(\lambda)$ is a Markov chain whose states are the compositions $\alpha \in \operatorname{Sym}(\lambda)$ that are rearrangements of λ (on a circle: $\alpha_{n+1}=\alpha_{1}$)

our setting: ASEP on a circle

$$
\begin{gathered}
n=8, \quad \lambda=(3,2,2,2,1,0,0,0) \\
\alpha=(1,2,2,0,0,0,3,2) \in \operatorname{ASEP}(\lambda)
\end{gathered}
$$

- Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right)$.
- $\operatorname{ASEP}(\lambda)$ is a Markov chain whose states are the compositions $\alpha \in \operatorname{Sym}(\lambda)$ that are rearrangements of λ (on a circle: $\alpha_{n+1}=\alpha_{1}$)
- The transitions are swaps of adjacent particles $A>B$ (fix $0 \leq t \leq 1$):

$$
X(A)(B) Y \stackrel{1}{\rightleftarrows} X(B)(A) Y
$$

our setting: ASEP on a circle

$$
\begin{gathered}
n=8, \quad \lambda=(3,2,2,2,1,0,0,0) \\
\alpha=(1,2,2,0,0,0,3,2) \in \operatorname{ASEP}(\lambda)
\end{gathered}
$$

- Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right)$.
- $\operatorname{ASEP}(\lambda)$ is a Markov chain whose states are the compositions $\alpha \in \operatorname{Sym}(\lambda)$ that are rearrangements of λ (on a circle: $\alpha_{n+1}=\alpha_{1}$)
- The transitions are swaps of adjacent particles $A>B$ (fix $0 \leq t \leq 1)$:

$$
X(A)(B) Y \stackrel{1}{\rightleftarrows} X(B)(A) Y
$$

- For example, $\operatorname{ASEP}((2,2,1,0))$ has 12 states:

$$
(2,2,1,0),(2,1,2,0),(2,1,0,2),(2,2,0,1),(2,0,2,1),(2,0,1,2),(0,2,2,1), \cdots
$$

The transitions from state $(2,1,2,0)$ are:

- $(1,2,2,0)$ with probability $t / 4$
- $(2,2,1,0)$ with probability $1 / 4$
- $(2,1,0,2)$ with probability $t / 4$
- $(0,1,2,2)$ with probability $1 / 4$

our setting: ASEP on a circle

$$
\begin{gathered}
n=8, \quad \lambda=(3,2,2,2,1,0,0,0) \\
\alpha=(1,2,2,0,0,0,3,2) \in \operatorname{ASEP}(\lambda)
\end{gathered}
$$

- Fix a circular lattice on n sites, and choose n nonnegative integer weights. Collection of weights: a vector $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right)$.
- $\operatorname{ASEP}(\lambda)$ is a Markov chain whose states are the compositions $\alpha \in \operatorname{Sym}(\lambda)$ that are rearrangements of λ (on a circle: $\alpha_{n+1}=\alpha_{1}$)
- The transitions are swaps of adjacent particles $A>B$ (fix $0 \leq t \leq 1)$:

$$
X(A)(B) Y \stackrel{1}{\rightleftarrows} X(B)(A) Y
$$

- For example, $\operatorname{ASEP}((2,2,1,0))$ has 12 states:

$$
(2,2,1,0),(2,1,2,0),(2,1,0,2),(2,2,0,1),(2,0,2,1),(2,0,1,2),(0,2,2,1), \cdots
$$

The transitions from state $(2,1,2,0)$ are:

- $(1,2,2,0)$ with probability $t / 4$
- $(2,2,1,0)$ with probability $1 / 4$
- $(2,1,0,2)$ with probability $t / 4$
- $(0,1,2,2)$ with probability $1 / 4$
- Goal: compute the stationary probabilities

Example for $\lambda=(2,1)$ and $n=3$

- the elements in the state space are:
(2) (1) (0) (2) (0) (1)
(1) (2) (0)
(1) (0) (2)
(0) (2) (1)
(0) (1) (2)
- the (row stochastic) transition matrix is:

$$
\left(\begin{array}{cccccc}
1-\frac{2+t}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{t}{3} \\
\frac{t}{3} & 1-\frac{1+2 t}{3} & 0 & \frac{t}{3} & \frac{1}{3} & 0 \\
\frac{t}{3} & 0 & 1-\frac{1+2 t}{3} & \frac{1}{3} & \frac{t}{3} & 0 \\
0 & \frac{1}{3} & \frac{t}{3} & 1-\frac{2+t}{3} & 0 & \frac{1}{3} \\
0 & \frac{t}{3} & \frac{1}{3} & 0 & 1-\frac{2+t}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{t}{3} & 0 & \frac{t}{3} & 1-\frac{1+2 t}{3}
\end{array}\right)
$$

Example for $\lambda=(2,1)$ and $n=3$

- the elements in the state space are:
(2) (1) (0) (2) (0) (1)
(1) (2) (0)
(1) (0) (2)
(0) (2) (1)
(0) (1) (2)
- the (row stochastic) transition matrix is:

$$
\left(\begin{array}{cccccc}
1-\frac{2+t}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{t}{3} \\
\frac{t}{3} & 1-\frac{1+2 t}{3} & 0 & \frac{t}{3} & \frac{1}{3} & 0 \\
\frac{t}{3} & 0 & 1-\frac{1+2 t}{3} & \frac{1}{3} & \frac{t}{3} & 0 \\
0 & \frac{1}{3} & \frac{t}{3} & 1-\frac{2+t}{3} & 0 & \frac{1}{3} \\
0 & \frac{t}{3} & \frac{1}{3} & 0 & 1-\frac{2+t}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{t}{3} & 0 & \frac{t}{3} & 1-\frac{1+2 t}{3}
\end{array}\right)
$$

- the (unnormalized) stationary distribution is:

$$
\begin{gathered}
\widetilde{\operatorname{Pr}}((2,1,0))=\widetilde{\operatorname{Pr}}((1,0,2))=\widetilde{\operatorname{Pr}}((0,2,1))=2+t \\
\widetilde{\operatorname{Pr}}((2,1,0))=\widetilde{\operatorname{Pr}}((1,0,2))=\widetilde{\operatorname{Pr}}((0,2,1))=1+2 t
\end{gathered}
$$

From ASEP to Macdonald polynomials

Define the partition function of $\operatorname{ASEP}(\lambda, n)$:

$$
\mathcal{Z}_{\lambda, n}(t)=\sum_{\alpha \in S_{n} \cdot \lambda} \widetilde{\operatorname{Pr}}(\alpha)(t)
$$

From ASEP to Macdonald polynomials

Define the partition function of $\operatorname{ASEP}(\lambda, n)$:

$$
\mathcal{Z}_{\lambda, n}(t)=\sum_{\alpha \in S_{n} \cdot \lambda} \widetilde{\operatorname{Pr}}(\alpha)(t)
$$

Theorem (Cantini-de Gier-Wheeler '15)

The partition function of $\operatorname{ASEP}(\lambda, n)$ is a specialization of the Macdonald polynomial:

$$
P_{\lambda}(1, \ldots, 1 ; 1, t)=\mathcal{Z}_{\lambda, n}(t)
$$

Symmetric functions

- Let $X=x_{1}, x_{2}, \cdots$ be a family of indeterminates, and let $\Lambda=\Lambda_{\mathbb{Q}}$ be the algebra of symmetric functions in X over \mathbb{Q}
- $f\left(x_{1}, \ldots, x_{n}\right) \in \Lambda$ is symmetric if $\forall \pi \in S_{n}, f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$

Symmetric functions

- Let $X=x_{1}, x_{2}, \cdots$ be a family of indeterminates, and let $\Lambda=\Lambda_{\mathbb{Q}}$ be the algebra of symmetric functions in X over \mathbb{Q}
- $f\left(x_{1}, \ldots, x_{n}\right) \in \Lambda$ is symmetric if $\forall \pi \in S_{n}, f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$
- Λ has several nice bases: e.g. $\left\{m_{\lambda}\right\},\left\{e_{\lambda}\right\},\left\{h_{\lambda}\right\},\left\{p_{\lambda}\right\}$, indexed by partitions λ. E.g. $m_{(2,1)}=\sum_{i, j} x_{i}^{2} x_{j}^{1}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots$

Let \langle,$\rangle be the standard inner product on \Lambda .\left\{s_{\lambda}\right\}$ is the unique basis of Λ :
i. orthogonal with respect to \langle,
ii. upper triangular with respect to $\left\{m_{\lambda}\right\}$:

$$
s_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda} c_{\mu \lambda} m_{\mu}
$$

where $<$ is with respect to dominance order on partitions.

Symmetric functions

- Let $X=x_{1}, x_{2}, \cdots$ be a family of indeterminates, and let $\Lambda=\Lambda_{\mathbb{Q}}$ be the algebra of symmetric functions in X over \mathbb{Q}
- $f\left(x_{1}, \ldots, x_{n}\right) \in \Lambda$ is symmetric if $\forall \pi \in S_{n}, f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$
- Λ has several nice bases: e.g. $\left\{m_{\lambda}\right\},\left\{e_{\lambda}\right\},\left\{h_{\lambda}\right\},\left\{p_{\lambda}\right\}$, indexed by partitions λ. E.g. $m_{(2,1)}=\sum_{i, j} x_{i}^{2} x_{j}^{1}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+\cdots$

Let \langle,$\rangle be the standard inner product on \Lambda .\left\{s_{\lambda}\right\}$ is the unique basis of Λ :
i. orthogonal with respect to \langle,
ii. upper triangular with respect to $\left\{m_{\lambda}\right\}$:

$$
s_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda} c_{\mu \lambda} m_{\mu}
$$

where $<$ is with respect to dominance order on partitions.

- $s_{\lambda}=\sum_{\sigma} x^{\sigma}$ where σ 's are semi-standard fillings of the Young diagram of shape λ
E.g. $s_{(2,1)}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}=m_{(2,1)}+m_{(1,1,1)}$

2		3		2		3		2		3		3		3	
1	1	1	1	1	2	1	2	1	3	1	3	2	2	2	3

Macdonald polynomials $P_{\lambda}(X ; q, t)$

- Let $\Lambda=\Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q} :

Macdonald polynomials $P_{\lambda}(X ; q, t)$

- Let $\Lambda=\Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q} :
- Macdonald '88 introduced the family of homogeneous symmetric polynomials $\left\{P_{\lambda}(X ; q, t)\right\}$ in $\Lambda(q, t)$, simultaneously generalizing the Schur polynomials (at $q=t=0$), Hall-Littlewood polynomials (at $q=0$ or $t=0$), and Jack polynomials (at $t=q^{\alpha}$ and $q \rightarrow 1$)

Macdonald polynomials $P_{\lambda}(X ; q, t)$

- Let $\Lambda=\Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q} :
- Macdonald '88 introduced the family of homogeneous symmetric polynomials $\left\{P_{\lambda}(X ; q, t)\right\}$ in $\Lambda(q, t)$, simultaneously generalizing the Schur polynomials (at $q=t=0$), Hall-Littlewood polynomials (at $q=0$ or $t=0$), and Jack polynomials (at $t=q^{\alpha}$ and $q \rightarrow 1$)

Let $\langle,\rangle_{q, t}$ be the inner product on $\Lambda(q, t)$. Then $\left\{P_{\lambda}\right\}$ is the unique basis of $\Lambda(q, t)$ that is uniquely determined by:
i. orthogonal basis for $\Lambda(q, t)$ with respect to $\langle,\rangle_{q, t}$
ii. upper triangular with respect to $\left\{m_{\lambda}\right\}$:

$$
P_{\lambda}(X ; q, t)=m_{\lambda}(X)+\sum_{\mu<\lambda} c_{\mu \lambda}(q, t) m_{\mu}(X)
$$

Macdonald polynomials $P_{\lambda}(X ; q, t)$

- Let $\Lambda=\Lambda_{\mathbb{Q}}(q, t)$, the algebra of symmetric functions with parameters q, t over \mathbb{Q} :
- Macdonald '88 introduced the family of homogeneous symmetric polynomials $\left\{P_{\lambda}(X ; q, t)\right\}$ in $\Lambda(q, t)$, simultaneously generalizing the Schur polynomials (at $q=t=0$), Hall-Littlewood polynomials (at $q=0$ or $t=0$), and Jack polynomials (at $t=q^{\alpha}$ and $q \rightarrow 1$)

Let $\langle,\rangle_{q, t}$ be the inner product on $\Lambda(q, t)$. Then $\left\{P_{\lambda}\right\}$ is the unique basis of $\Lambda(q, t)$ that is uniquely determined by:
i. orthogonal basis for $\Lambda(q, t)$ with respect to $\langle,\rangle_{q, t}$
ii. upper triangular with respect to $\left\{m_{\lambda}\right\}$:

$$
P_{\lambda}(X ; q, t)=m_{\lambda}(X)+\sum_{\mu<\lambda} c_{\mu \lambda}(q, t) m_{\mu}(X)
$$

- Example:

$$
P_{(2,1)}(X ; \boldsymbol{q}, t)=m_{(2,1)}+\frac{(1-t)(2+q+t+2 q t)}{1-q t^{2}} m_{(1,1,1)}
$$

Combinatorial formulas

- Haglund-Haiman-Loehr '04 gave a formula for P_{λ} as a sum over tableaux with statistics maj and (co)inv:

$$
P_{\lambda}(X ; q, t)=\sum_{\substack{\sigma \in \operatorname{dg}(\lambda) \\ \sigma \text { non-attacking }}} x^{\sigma} q^{\operatorname{maj}(\sigma)} t^{\operatorname{coinv}(\sigma)} \prod_{u} \frac{1-t}{1-q^{\operatorname{leg}(u)+1} t^{\operatorname{arm}(u)+1}}
$$

Combinatorial formulas

- Haglund-Haiman-Loehr '04 gave a formula for P_{λ} as a sum over tableaux with statistics maj and (co)inv:

$$
P_{\lambda}(X ; q, t)=\sum_{\substack{\sigma \in \operatorname{dg}(\lambda) \\ \sigma \text { non-attacking }}} x^{\sigma} q^{\operatorname{maj}(\sigma)} t^{\operatorname{coinv}(\sigma)} \prod_{u} \frac{1-t}{1-q^{\operatorname{leg}(u)+1} t^{\operatorname{arm}(u)+1}}
$$

- Corteel-M-Williams '18: a new formula for P_{λ} in terms of multiline queues, which also give formulas for the stationary distribution of the ASEP; this was inspired by the result of Cantini-de Gier-Wheeler '15

multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.

multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- the pairing determines a labeling

multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- the pairing determines a labeling

- The state of a multiline queue is read off the bottom row

multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- the pairing determines a labeling

$$
\text { Angel '08, Ferrari-Martin '07 (} \left.t=0 \text { case), Martin '18 (for } q=x_{1}=\cdots=x_{n}=1\right) \text {, }
$$

Corteel-M-Williams '18 (general)

- The state of a multiline queue is read off the bottom row
- The weight $w t(M)$ of a multiline queue depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\text { weight }=x_{1}^{2} x_{2}^{2} x_{3} x_{4}^{2} x_{5} x_{6}^{2} q t^{2} \frac{(1-t)^{3}}{\left(1-q t^{3}\right)^{2}\left(1-q t^{2}\right)}
$$

multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- the pairing determines a labeling

2	4			
6	1	3		
6	1	5	2	3

$$
\text { Angel '08, Ferrari-Martin '07 (} t=0 \text { case), Martin '18 (for } q=x_{1}=\cdots=x_{n}=1 \text {), }
$$

Corteel-M-Williams '18 (general)

- The state of a multiline queue is read off the bottom row
- The weight $w t(M)$ of a multiline queue depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\text { weight }=x_{1}^{2} x_{2}^{2} x_{3} x_{4}^{2} x_{5} x_{6}^{2} q t^{2} \frac{(1-t)^{3}}{\left(1-q t^{3}\right)^{2}\left(1-q t^{2}\right)}
$$

- Can be represented by a tableau, where each string is mapped to a column

multiline queues

- a multiline queue (MLQ) of type λ, n is an arrangement and pairing of balls on a $n \times \lambda_{1}$ lattice, with λ_{j}^{\prime} balls in row j.
- the pairing determines a labeling

$$
\begin{aligned}
n & =6 \\
\lambda & =(3,3,2,1,1) \\
\lambda^{\prime} & =(2,3,5)
\end{aligned}
$$

2	4			
6	1	3		
6	1	5	2	3

Angel '08, Ferrari-Martin '07 ($t=0$ case), Martin '18 (for $q=x_{1}=\cdots=x_{n}=1$),
Corteel-M-Williams '18 (general)

- The state of a multiline queue is read off the bottom row
- The weight $w t(M)$ of a multiline queue depends on the parameters $t, q, x_{1}, \ldots, x_{n}$:

$$
\text { weight }=x_{1}^{2} x_{2}^{2} x_{3} x_{4}^{2} x_{5} x_{6}^{2} q t^{2} \frac{(1-t)^{3}}{\left(1-q t^{3}\right)^{2}\left(1-q t^{2}\right)}
$$

- Can be represented by a tableau, where each string is mapped to a column
- Can be represented by a queueing system and described as a coupled system of 1-ASEPs. The pairing is a projection map onto the n-ASEP.

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)
The (unnormalized) stationary probability of state α of the mASEP is

$$
\widetilde{\operatorname{Pr}}(\alpha)(t)=\sum_{M \in M L Q(\alpha)} w t(M)(1, \ldots, 1 ; 1, t)
$$

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state α of the mASEP is

$$
\widetilde{\operatorname{Pr}}(\alpha)(t)=\sum_{M \in M L Q(\alpha)} w t(M)(1, \ldots, 1 ; 1, t)
$$

Theorem (Cantini-de Gier-Wheeler '15)

The partition function of $\operatorname{ASEP}(\lambda, n)$ is a specialization of the Macdonald polynomial:

$$
P_{\lambda}(1, \ldots, 1 ; 1, t)=\mathcal{Z}_{\lambda, n}(t)=\sum_{\alpha \in S_{n} \cdot \lambda} \widetilde{\operatorname{Pr}}(\alpha)(t)
$$

From ASEP to Macdonald polynomials

Theorem (Martin '18, Corteel-M-Williams '18)

The (unnormalized) stationary probability of state α of the mASEP is

$$
\widetilde{\operatorname{Pr}}(\alpha)(t)=\sum_{M \in M L Q(\alpha)} w t(M)(1, \ldots, 1 ; 1, t)
$$

Theorem (Cantini-de Gier-Wheeler '15)

The partition function of $\operatorname{ASEP}(\lambda, n)$ is a specialization of the Macdonald polynomial:

$$
P_{\lambda}(1, \ldots, 1 ; 1, t)=\mathcal{Z}_{\lambda, n}(t)=\sum_{\alpha \in S_{n} \cdot \lambda} \widetilde{\operatorname{Pr}}(\alpha)(t)
$$

Theorem (Corteel-M-Williams '18)

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{M \in \operatorname{MLQ}(\lambda, n)} w t(M)\left(x_{1}, \ldots, x_{n} ; q, t\right)
$$

(also Lenart '09 for λ with distinct parts.)

$t=0$: Hall-Littlewood polynomials $P_{\lambda}(X ; q, 0)$ via

multiline queues

- at $t=0$, the ASEP becomes the TASEP:

$t=0$: Hall-Littlewood polynomials $P_{\lambda}(X ; q, 0)$ via

multiline queues

- at $t=0$, the ASEP becomes the TASEP:

- Define the Hall-Littlewood polynomial $P_{\lambda}(X ; q)=P_{\lambda}(X ; q, 0)$

$t=0$: Hall-Littlewood polynomials $P_{\lambda}(X ; q, 0)$ via

multiline queues

- at $t=0$, the ASEP becomes the TASEP:

- Define the Hall-Littlewood polynomial $P_{\lambda}(X ; q)=P_{\lambda}(X ; q, 0)$
- In the multiline queues, pairings become forced.

$$
\begin{aligned}
& n=6 \\
& \lambda=(3,3,2,1,1)
\end{aligned}
$$

$t=0$: Hall-Littlewood polynomials $P_{\lambda}(X ; q, 0)$ via

multiline queues

- at $t=0$, the ASEP becomes the TASEP:

- Define the Hall-Littlewood polynomial $P_{\lambda}(X ; q)=P_{\lambda}(X ; q, 0)$
- In the multiline queues, pairings become forced.

$$
\begin{aligned}
n & =6 \\
\lambda & =(3,3,2,1,1) \\
\alpha & =(2,1,0,3,1,3)
\end{aligned}
$$

$t=0$: Hall-Littlewood polynomials $P_{\lambda}(X ; q, 0)$ via

multiline queues

- at $t=0$, the ASEP becomes the TASEP:

- Define the Hall-Littlewood polynomial $P_{\lambda}(X ; q)=P_{\lambda}(X ; q, 0)$
- In the multiline queues, pairings become forced.

	(3)		(3)			$n=6$
(2)		(3)			(3)	$\lambda=(3,3,2,1,1)$
(2)	(1)		(3)	(1)	(3)	$\alpha=(2,1,0,3,1,3)$
1	2	3	4	5	6	

- call $\operatorname{MLQ}(\lambda, n)$ the set of ball arrangements with λ_{j}^{\prime} balls in each row j, on a lattice of size $n \times \lambda_{1}$. (The labels can be recovered uniquely)

$$
M=(\{1,2,4,5,6\},\{1,3,6\},\{2,4\})
$$

$q=t=0$: Schur polynomials via multiline queues

- at $q=0$, the multiline queues are non-wrapping, denote this set by $\operatorname{MLQ}_{0}(\lambda, n)$:

| \square | $\bullet \bullet$ |
| :--- | :--- | :--- |
| \square | $\bullet \bullet$ |

$q=t=0$: Schur polynomials via multiline queues

- at $q=0$, the multiline queues are non-wrapping, denote this set by $\operatorname{MLQ}_{0}(\lambda, n)$:

$q=t=0$: Schur polynomials via multiline queues

- at $q=0$, the multiline queues are non-wrapping, denote this set by $\operatorname{MLQ}_{0}(\lambda, n)$:

$$
\sum_{M \in \operatorname{MLQ}_{0}(\lambda, n)} x^{M}=s_{\lambda}
$$

$$
\begin{array}{|l|l|}
\hline 4 & 4 \\
\hline 2 & 3 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 4 & 4 \\
\hline 3 & 3 \\
\hline
\end{array}
$$

- the map $\operatorname{MLQ}_{0}(\lambda) \rightarrow \operatorname{SSYT}(\lambda)$ is given by column RSK applied to the row reading word of the multiline queue. (bottom to top, left to right)

Lascoux-Schützenberger charge formula via MLQs

- For a permutation σ, define charge $(\sigma):=\operatorname{maj}\left(\operatorname{rev}\left(\sigma^{-1}\right)\right)$. For a SSYT τ, charge $(\tau)=\operatorname{charge}(\operatorname{rw}(\tau))$.

Theorem (Lascoux-Schützenberger, '78)

$$
P_{\lambda}(X ; q, 0)=\sum_{\mu \leq \lambda} K_{\mu^{\prime} \lambda^{\prime}}(q) s_{\mu}, \quad K_{\lambda \mu}(q)=\sum_{Q \in \operatorname{SSYT}(\lambda, \mu)} q^{\text {charge }(Q)}
$$

- Define collapsing procedure ρ (with Jerónimo Valencia '23+):

$$
\begin{array}{rr}
\operatorname{MLQ}(\lambda) & \bigcup_{\mu} \operatorname{MLQ}_{0}(\mu) \times \operatorname{SSYT}\left(\mu^{\prime}, \lambda^{\prime}\right) \\
M \longrightarrow & \left(M_{0}, Q\right)
\end{array}
$$

- charge $(Q)=\operatorname{maj}(M)$ (the q-statistic, keeps track of wrapping pairings)
- can be described using lowering operators on the column reading word of M
- lifting procedure ρ^{-1} can be described using raising operators
- generalizes to a quasisymmetric refinement of $K_{\lambda \mu}(q)$.

Collapsing procedure

$$
\begin{gathered}
M \in \operatorname{MLQ}((6,4,2)) \\
\operatorname{maj}(M)=2+1+3=6
\end{gathered}
$$

Collapsing procedure

$$
\begin{aligned}
& \lambda=(6,4,2) \\
& \operatorname{maj}(M)=6
\end{aligned}
$$

$$
\begin{gathered}
\lambda=(4,3,2,2,1) \\
\operatorname{maj}\left(M_{0}\right)=0
\end{gathered}
$$

4				
3	6			
2	2	3	4	
1	1	1	2	
5				

charge $(Q)=6$

Collapsing procedure

Lemma

$$
\begin{aligned}
\operatorname{RSK}^{c o l}:\binom{a_{1}, \ldots, a_{n}}{b_{1}, \ldots, b_{n}} & \rightarrow \operatorname{SSYT}\left(\mu^{\prime}\right) \times \operatorname{SSYT}(\mu) \\
\operatorname{RSK}^{c o l}(\operatorname{rw}(M)) & =\operatorname{RSK}^{c o l}(\operatorname{rw}(\rho(M))
\end{aligned}
$$

$r w(M)=234|135| 23|15| 6 \mid 2$
$\operatorname{rw}(\rho(M))=23456|1235| 13 \mid 2$

Littlewood-Richardson rule via MLQs

Theorem

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}=\sum_{\nu} c_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}} s_{\nu}
$$

- Using the collapsing procedure:

$$
\operatorname{MLQ}_{0}(\lambda) \times \operatorname{MLQ}_{0}(\mu) \rightarrow \operatorname{MLQ}_{0}(\nu) \times \operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu\right)
$$

- $\operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu^{\prime}\right)$ is the set of Yamanouchi fillings of $\nu^{\prime} / \lambda^{\prime}$ with content μ^{\prime}

Littlewood-Richardson rule via MLQs

Theorem

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}=\sum_{\nu} c_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}} s_{\nu}
$$

- Using the collapsing procedure:

$$
\operatorname{MLQ}_{0}(\lambda) \times \operatorname{MLQ}_{0}(\mu) \rightarrow \operatorname{MLQ}_{0}(\nu) \times \operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu\right)
$$

- $\operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu^{\prime}\right)$ is the set of Yamanouchi fillings of $\nu^{\prime} / \lambda^{\prime}$ with content μ^{\prime}

Littlewood-Richardson rule via MLQs

Theorem

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}=\sum_{\nu} c_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}} s_{\nu}
$$

- Using the collapsing procedure:

$$
\operatorname{MLQ}_{0}(\lambda) \times \operatorname{MLQ}_{0}(\mu) \rightarrow \operatorname{MLQ}_{0}(\nu) \times \operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu\right)
$$

- $\operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu^{\prime}\right)$ is the set of Yamanouchi fillings of $\nu^{\prime} / \lambda^{\prime}$ with content μ^{\prime}

Littlewood-Richardson rule via MLQs

Theorem

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}=\sum_{\nu} c_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}} s_{\nu}
$$

- Using the collapsing procedure:

$$
\operatorname{MLQ}_{0}(\lambda) \times \operatorname{MLQ}_{0}(\mu) \rightarrow \operatorname{MLQ}_{0}(\nu) \times \operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu\right)
$$

- $\operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu^{\prime}\right)$ is the set of Yamanouchi fillings of $\nu^{\prime} / \lambda^{\prime}$ with content μ^{\prime}

Littlewood-Richardson rule via MLQs

Theorem

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}=\sum_{\nu} c_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}} s_{\nu}
$$

- Using the collapsing procedure:

$$
\operatorname{MLQ}_{0}(\lambda) \times \operatorname{MLQ}_{0}(\mu) \rightarrow \operatorname{MLQ}_{0}(\nu) \times \operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu\right)
$$

- $\operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu^{\prime}\right)$ is the set of Yamanouchi fillings of $\nu^{\prime} / \lambda^{\prime}$ with content μ^{\prime}

Littlewood-Richardson rule via MLQs

Theorem

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}=\sum_{\nu} c_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}} s_{\nu}
$$

- Using the collapsing procedure:

$$
\operatorname{MLQ}_{0}(\lambda) \times \operatorname{MLQ}_{0}(\mu) \rightarrow \operatorname{MLQ}_{0}(\nu) \times \operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu\right)
$$

- $\operatorname{SSYT}^{*}\left(\nu^{\prime} / \lambda^{\prime}, \mu^{\prime}\right)$ is the set of Yamanouchi fillings of $\nu^{\prime} / \lambda^{\prime}$ with content μ^{\prime}

modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X ; q, t)$ as a combinatorial version of the P_{λ} 's

modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X ; q, t)$ as a combinatorial version of the P_{λ} 's

- obtained from a normalized form of $P_{\lambda}(X ; q, t)$ by plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

where J_{λ} is a scalar multiple of P_{λ}.

$$
\text { Example: } \widetilde{H}_{(2,1)}(X ; q, t)=m_{(3)}+(1+q+t) m_{(2,1)}+(1+2 q+2 t+q t) m_{(1,1,1)}
$$

modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X ; q, t)$ as a combinatorial version of the P_{λ} 's

- obtained from a normalized form of $P_{\lambda}(X ; q, t)$ by plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

where J_{λ} is a scalar multiple of P_{λ}.

$$
\text { Example: } \widetilde{H}_{(2,1)}(X ; q, t)=m_{(3)}+(1+q+t) m_{(2,1)}+(1+2 q+2 t+q t) m_{(1,1,1)}
$$

- Haglund-Haiman-Loehr '04 also gave a formula for \widetilde{H}_{λ} as a sum over tableaux with statistics maj and (co)inv:

$$
\widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma \in \operatorname{dg}(\lambda)} q^{\operatorname{maj}(\sigma)} t^{\operatorname{inv}(\sigma)} x^{\sigma}
$$

(recall $\left.P_{\lambda}(X ; q, t)=\sum_{\substack{\sigma \in \operatorname{dg}(\lambda) \\ \sigma \text { non-attacking }}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{coinv}(\sigma)} x^{\sigma} \prod_{u} \frac{1-t}{1-q^{\operatorname{leg}(u)+1} t^{\operatorname{arm}(u)+1}}\right)$

modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X ; q, t)$ as a combinatorial version of the P_{λ} 's

- obtained from a normalized form of $P_{\lambda}(X ; q, t)$ by plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

where J_{λ} is a scalar multiple of P_{λ}.

$$
\text { Example: } \widetilde{H}_{(2,1)}(X ; q, t)=m_{(3)}+(1+q+t) m_{(2,1)}+(1+2 q+2 t+q t) m_{(1,1,1)}
$$

- Haglund-Haiman-Loehr '04 also gave a formula for \widetilde{H}_{λ} as a sum over tableaux with statistics maj and (co)inv:

$$
\widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma \in \operatorname{dg}(\lambda)} q^{\operatorname{maj}(\sigma)} t^{\operatorname{inv}(\sigma)} x^{\sigma}
$$

(recall $\left.P_{\lambda}(X ; q, t)=\sum_{\substack{\sigma \in \operatorname{dg}(\lambda) \\ \sigma \text { non-attacking }}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{coinv}(\sigma)} x^{\sigma} \prod_{u} \frac{1-t}{1-q^{\operatorname{leg}(u)+1} t^{\operatorname{arm}(u)+1}}\right)$

- Garbali-Wheeler '20 gave a formula for \widetilde{H}_{λ} using integrability, in terms of colored paths

modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$

Garsia and Haiman '96 introduced the modified Macdonald polynomials, denoted by $\widetilde{H}_{\lambda}(X ; q, t)$ as a combinatorial version of the P_{λ} 's

- obtained from a normalized form of $P_{\lambda}(X ; q, t)$ by plethystic substitution:

$$
\widetilde{H}_{\lambda}(X ; q, t)=t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]
$$

where J_{λ} is a scalar multiple of P_{λ}.
Example: $\widetilde{H}_{(2,1)}(X ; q, t)=m_{(3)}+(1+q+t) m_{(2,1)}+(1+2 q+2 t+q t) m_{(1,1,1)}$

- Haglund-Haiman-Loehr '04 also gave a formula for \widetilde{H}_{λ} as a sum over tableaux with statistics maj and (co)inv:

$$
\widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma \in \operatorname{dg}(\lambda)} q^{\operatorname{maj}(\sigma)} t^{\operatorname{inv}(\sigma)} x^{\sigma}
$$

(recall $\left.P_{\lambda}(X ; q, t)=\sum_{\substack{\sigma \in \operatorname{dg}(\lambda) \\ \sigma \text { non-attacking }}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{coinv}(\sigma)} x^{\sigma} \prod_{u} \frac{1-t}{1-q^{\operatorname{leg}(u)+1} t^{\operatorname{arm}(u)+1}}\right)$

- Garbali-Wheeler '20 gave a formula for \widetilde{H}_{λ} using integrability, in terms of colored paths
- Corteel-Haglund-M-Mason-Williams '20 conjecture: a new formula for \widetilde{H}_{λ} with maj and a new statistic quinv:

$$
\widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma \in \operatorname{dg}(\lambda)} q^{\operatorname{maj}(\sigma)} t^{q u i n v(\sigma)} x^{\sigma}
$$

From multiline queues to a new formula for \widetilde{H}_{λ}

- $\widetilde{H}_{\lambda}(X ; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

From multiline queues to a new formula for \widetilde{H}_{λ}

- $\widetilde{H}_{\lambda}(X ; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

- $P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)$ should correspond to a multiline queue with countably many columns labeled by

$$
x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots
$$

From multiline queues to a new formula for \widetilde{H}_{λ}

- $\widetilde{H}_{\lambda}(X ; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

- $P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)$ should correspond to a multiline queue with countably many columns labeled by

$$
x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots
$$

- this leads to a new "queue inversion" statistic for t that we call quinv:

From multiline queues to a new formula for \widetilde{H}_{λ}

- $\widetilde{H}_{\lambda}(X ; q, t)$ is obtained from the integral form of P_{λ} via plethysm:

$$
\begin{aligned}
\widetilde{H}_{\lambda}(X ; \boldsymbol{q}, t) & =t^{n(\lambda)} J_{\lambda}\left[\frac{X}{1-t^{-1}} ; \boldsymbol{q}, t^{-1}\right] \\
& =f_{\lambda}(\boldsymbol{q}, t) P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)
\end{aligned}
$$

- $P_{\lambda}\left(x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots ; \boldsymbol{q}, t^{-1}\right)$ should correspond to a multiline queue with countably many columns labeled by

$$
x_{1}, x_{1} t^{-1}, x_{1} t^{-2}, \ldots, x_{2}, x_{2} t^{-1}, x_{2} t^{-2}, \ldots
$$

- this leads to a new "queue inversion" statistic for t that we call quinv:

(Corteel-Haglund-M-Mason-Williams '20, Ayyer-M-Martin '21)
- the resulting objects are of the same flavor as multiline queues, except that multiple balls are allowed at each location. (This translates to removing the "non-attacking" condition from the corresponding tableaux)

Example: $\tilde{H}_{(2,1)}(X ; q, t)$

$\widetilde{H}_{(2,1)}\left(x_{1}, x_{2} ; q, t\right)=m_{(3)}+(1+t+q) m_{(2,1)}+(1+2 t+2 q+q t) m_{(1,1,1)}$

- (AMM21) $\quad \widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma: \mathrm{dg}(\lambda) \rightarrow \mathbb{Z}_{+}} q^{\text {maj }(\sigma)} t^{\text {quinv }(\sigma)} x^{\sigma}$

1		2		1		1		1		2		3		2		1		3	
1	1	1	1	1	2	2	1	2	3	1	3	1	2	3	1	3	2	2	1

- (HHL04) $\quad \widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow \mathbb{Z}_{+}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{inv}(\sigma)} X^{\sigma}$

1	2	1	1	1	2	3	2	1	3
11	11	12	21	23	13	12	31	32	21
m_{3}	$q m_{21}$	m_{21}	$t m_{21}$	m_{111}	$q m_{111}$	q m_{111}	$t m_{111}$	$t m_{111}$	qt m_{111}

Example: $\tilde{H}_{(2,1)}(X ; q, t)$

$\widetilde{H}_{(2,1)}\left(x_{1}, x_{2} ; q, t\right)=m_{(3)}+(1+t+q) m_{(2,1)}+(1+2 t+2 q+q t) m_{(1,1,1)}$

- (AMM21)

$$
\widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow \mathbb{Z}_{+}} q^{\operatorname{maj}(\sigma)} t^{\mathrm{quinv}(\sigma)} x^{\sigma}
$$

- while the inv and quinv statistics appear very similar, there does not seem to be an easy way to go from one to the other - is there a bijective proof?

Example: $\widetilde{H}_{(2,1)}(X ; q, t)$

$\widetilde{H}_{(2,1)}\left(x_{1}, x_{2} ; q, t\right)=m_{(3)}+(1+t+q) m_{(2,1)}+(1+2 t+2 q+q t) m_{(1,1,1)}$

- (AMM21)

$$
\widetilde{H}_{\lambda}(X ; q, t)=\sum_{\sigma: \operatorname{dg}(\lambda) \rightarrow \mathbb{Z}_{+}} q^{\operatorname{maj}(\sigma)} t^{\mathrm{quinv}(\sigma)} x^{\sigma}
$$

- while the inv and quinv statistics appear very similar, there does not seem to be an easy way to go from one to the other - is there a bijective proof? Update! Yes there is due to Loehr '22

motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings

motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings

"plethystic version" of certain non-attacking fillings

"plethystic version" of multiline queues

motivation for queue inversions: multiline diagrams

The tableaux are actually representing a queueing system which is an arrangement of lattice paths/strings

"plethystic version" of certain non-attacking fillings queue inversion

"plethystic version" of multiline queues
skipped particle

Big picture

What is the analogous interacting particle system whose partition function is a specialization of \widetilde{H}_{λ} ?

Big picture

What is the analogous interacting particle system whose partition function is a specialization of \widetilde{H}_{λ} ?

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

$$
\begin{gathered}
\text { Here, } n=5, k=7 \\
\tau=(11|\cdot| 111|1| 1)
\end{gathered}
$$

- simplest case: there are k indistinguishable particles, moving clockwise. A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the k particles on the n sites.

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

$$
\begin{gathered}
\text { Here, } n=5, k=7 \\
\tau=(11|\cdot| 111|1| 1)
\end{gathered}
$$

- simplest case: there are k indistinguishable particles, moving clockwise. A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the k particles on the n sites.
- transitions: a particle jumps from site j to site $j+1 \bmod n$ with rate $f\left(\tau_{j}\right)$ for some $f: \mathbb{N} \rightarrow \mathbb{R}_{+}$

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

$$
2 \longleftarrow 3,3,1
$$

$$
\begin{gathered}
\text { Here, } n=5, k=7 \\
\tau=(2,2|\cdot| 3,3,1|2| 1)
\end{gathered}
$$

- simplest case: there are k indistinguishable particles, moving clockwise. A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the k particles on the n sites.
- transitions: a particle jumps from site j to site $j+1 \bmod n$ with rate $f\left(\tau_{j}\right)$ for some $f: \mathbb{N} \rightarrow \mathbb{R}_{+}$
- multispecies variant: we now allow different particle types, labeled by integers (particles of the same type are still indistinguishable)

totally asymmetric zero range processes (TAZRP)

- continuous-time stochastic processes (Spitzer '70), can be defined on arbitrary graphs. In our case, we have a circular lattice with n sites.

$$
\begin{gathered}
\text { Here, } n=5, k=7 \\
\tau=(2,2|\cdot| 3,3,1|2| 1)
\end{gathered}
$$

- simplest case: there are k indistinguishable particles, moving clockwise. A configuration $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is any allocation of the k particles on the n sites.
- transitions: a particle jumps from site j to site $j+1 \bmod n$ with rate $f\left(\tau_{j}\right)$ for some $f: \mathbb{N} \rightarrow \mathbb{R}_{+}$
- multispecies variant: we now allow different particle types, labeled by integers (particles of the same type are still indistinguishable)
- Kuniba-Maruyama-Okado (2015+) (and others) have studied many multispecies variants of the TAZRP. All of these are integrable! The version we will describe was first studied by Takayama '15

the mTAZRP: states

- Fix a (circular 1D) lattice on n sites and a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{k}>0\right)$ for the particle types

the mTAZRP: states

- Fix a (circular 1D) lattice on n sites and a partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{k}>0\right)$ for the particle types
- $\operatorname{TAZRP}(\lambda, n)$ is a Markov chain whose states are multiset compositions τ of type λ, with n (possibly empty) parts

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$
- The rates depend on a fixed parameter $0 \leq t<1$, and on the content of the site containing the particle

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$
- The rates depend on a fixed parameter $0 \leq t<1$, and on the content of the site containing the particle
- For $1 \leq j \leq n$ and $k \in \lambda$, call $f_{j}(k)$ the rate of the jump of particle k from site j to site $j+1$. If site j has d particles larger than k and c particles of type k, then

$$
f_{j}(k)=x_{j}^{-1} t^{d} \sum_{u=0}^{c-1} t^{u}
$$

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$
- The rates depend on a fixed parameter $0 \leq t<1$, and on the content of the site containing the particle
- For $1 \leq j \leq n$ and $k \in \lambda$, call $f_{j}(k)$ the rate of the jump of particle k from site j to site $j+1$. If site j has d particles larger than k and c particles of type k, then

$$
f_{j}(k)=x_{j}^{-1} t^{d} \sum_{u=0}^{c-1} t^{u}
$$

the mTAZRP: transition rates

- Each particle is equipped with an exponential clock. Transitions are jumps from site j to site $j+1$
- The rates depend on a fixed parameter $0 \leq t<1$, and on the content of the site containing the particle
- For $1 \leq j \leq n$ and $k \in \lambda$, call $f_{j}(k)$ the rate of the jump of particle k from site j to site $j+1$. If site j has d particles larger than k and c particles of type k, then

$$
f_{j}(k)=x_{j}^{-1} t^{d} \sum_{u=0}^{c-1} t^{u}
$$

For example: If site j contains the particles $\{4,3,3,1,1,1\}$, then:

$$
\begin{array}{lll}
k=1: & d=3, & c=3, \\
k=3: & d=1, & c=2, \\
k=4: & d=0, & c=1,
\end{array}
$$

Lumping of tableaux to mTAZRP

Very similar projection map as for the ASEP.

- Given a filling σ, read the state $\tau \in \operatorname{TAZRP}(\lambda, n)$ from the bottom row of σ as follows:
τ_{j} is the multiset $\left\{\lambda_{i}: \sigma(1, i)=j\right\}$

Lumping of tableaux to mTAZRP

Very similar projection map as for the ASEP.

- Given a filling σ, read the state $\tau \in \operatorname{TAZRP}(\lambda, n)$ from the bottom row of σ as follows:
τ_{j} is the multiset $\left\{\lambda_{i}: \sigma(1, i)=j\right\}$
- For example, for $\lambda=(2,1,1)$ and $n=3$, the following are all the tableaux that correspond to the state $\tau=(21|\cdot| 1)$:

1			2		3			1			2			3		
1	1	3	1	13	1	1	3	1	3	1	1	3	1	1	3	

TAZRP probabilities and tableaux

Theorem (Ayyer-M-Martin '21)

Fix λ, n. The (unnormalized) stationary probability of $\tau \in \operatorname{TAZRP}(\lambda, n)$ is

$$
\tilde{\operatorname{Pr}}(\tau)=\sum_{\substack{\sigma: \operatorname{dg}(\lambda) \rightarrow[n] \\ \sigma \text { has type } \tau}} x^{\sigma} t^{\text {quinv }(\sigma)}
$$

Corollary

The so-called partition function of $\operatorname{TAZRP}(\lambda, n)$ is

$$
\mathcal{Z}_{\lambda, n}\left(x_{1}, \ldots, x_{n} ; t\right)=\widetilde{H}_{\lambda}\left(x_{1}, \ldots, x_{n} ; 1, t\right)
$$

Proof: construction of a Markov chain on tableaux that lumps to the TAZRP.

an example for $\lambda=(2,1,1)$ and $n=2$

The stationary distribution is:

Example computation for $(21 \mid 1)$:

1		
1	1	2

\& t^{2},\end{aligned}\)

$$
\begin{array}{|l|l|l}
\hline 2 & & \\
\hline 1 & 1 & 2 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l}
\hline 1 & & \\
\hline 1 & 2 & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l}
\hline 2 & & \\
\hline 1 & 2 & 1 \\
\hline
\end{array}
$$

the total is:

$$
\widetilde{\operatorname{Pr}}(21 \mid 1)=x_{1}^{2} x_{2}\left(t x_{1}+x_{2}\right)(1+t) .
$$

Current

- The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.

Current

- The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.
- Let us first look at the single species case: $\lambda=\left(1^{m}\right)$ on n sites.

$$
\begin{gathered}
\text { Here, } n=5, m=7 \\
\tau=(2,0,3,1,1)
\end{gathered}
$$

Each configuration can be written as a weak composition $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$.

Current

- The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.
- Let us first look at the single species case: $\lambda=\left(1^{m}\right)$ on n sites.

$$
\begin{gathered}
\text { Here, } n=5, m=7 \\
\tau=(2,0,3,1,1)
\end{gathered}
$$

Each configuration can be written as a weak composition $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$.

- The stationary probability of the configuration τ is:

$$
\pi(\tau)=\frac{1}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\left[\begin{array}{c}
m \\
\tau_{1}, \ldots, \tau_{n}
\end{array}\right]_{t} \prod_{i=1}^{n} x_{i}^{\tau_{i}}
$$

Current

- The current of particle ℓ across the edge j is defined as the number of particles of type ℓ traversing the edge j per unit of time in the large time limit.
- Let us first look at the single species case: $\lambda=\left(1^{m}\right)$ on n sites.

$$
\begin{gathered}
\text { Here, } n=5, m=7 \\
\tau=(2,0,3,1,1)
\end{gathered}
$$

Each configuration can be written as a weak composition $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$.

- The stationary probability of the configuration τ is:

$$
\pi(\tau)=\frac{1}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\left[\begin{array}{c}
m \\
\tau_{1}, \ldots, \tau_{n}
\end{array}\right]_{t} \prod_{i=1}^{n} x_{i}^{\tau_{i}}
$$

Proposition (Current for the single species TAZRP)

For the single-species TAZRP on n sites with m particles, the current is given by

$$
J=[m]_{t} \frac{\widetilde{H}_{\left(1^{m-1}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}
$$

Current

Theorem (Ayyer-M-Martin '22+)

Let $\lambda=\left(1^{m_{1}}, \ldots, k^{m_{k}}\right)$, and let $1 \leq j \leq k$. The current of the particle of type j of the TAZRP of type λ on n sites is given by

$$
J=\left[m_{j}+\cdots+m_{k}\right]_{t} \frac{\widetilde{H}_{\left(1^{m_{j}+\cdots+m_{k}-1}\right)}}{\widetilde{H}_{\left(1^{m_{j}+\cdots+m_{k}}\right)}}-\left[m_{j+1}+\cdots+m_{k}\right]_{t} \frac{\widetilde{H}_{\left(1^{m_{j+1}+\cdots+m_{k}-1}\right)}}{\widetilde{H}_{\left(1^{m_{j+1}+\cdots+m_{k}}\right)}}
$$

Densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$.
- Define $z_{j}^{(\ell)}$ to be the random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$.
- Denote the expectation in the stationary distribution by $\left\langle z_{j}^{(\ell)}\right\rangle$.

Theorem (Ayyer-M-Martin '22+)

For $1 \leq \ell \leq k$, the density of the ℓ 'th species at site 1 is given by

$$
\left\langle z_{1}^{(\ell)}\right\rangle=x_{1} \partial_{x_{1}} \log \left(\frac{\widetilde{H}_{\left(1^{m}{ }^{m}+\cdots+m_{k}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m_{\ell+1}+\cdots+m_{k}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\right) .
$$

Densities

- Take $\operatorname{TAZRP}(\lambda, n)$ with content $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, k^{m_{k}}\right)$.
- Define $z_{j}^{(\ell)}$ to be the random variable counting the number of particles of type ℓ at site j in a configuration of $\operatorname{TAZRP}(\lambda, n)$.
- Denote the expectation in the stationary distribution by $\left\langle z_{j}^{(\ell)}\right\rangle$.

Theorem (Ayyer-M-Martin '22+)

For $1 \leq \ell \leq k$, the density of the ℓ 'th species at site 1 is given by

$$
\left\langle z_{1}^{(\ell)}\right\rangle=x_{1} \partial_{x_{1}} \log \left(\frac{\widetilde{H}_{\left(1^{m}{ }^{m}+\cdots+m_{k}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}{\widetilde{H}_{\left(1^{m_{\ell+1}+\cdots+m_{k}}\right)}\left(x_{1}, \ldots, x_{n} ; 1, t\right)}\right) .
$$

Corollary

$\left\langle z_{1}^{(\ell)}\right\rangle$ is symmetric in the variables $\left\{x_{2}, \ldots, x_{n}\right\}$.

Local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.

Local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.
- Let $\mathbb{P}_{\lambda, n}(\bar{w})$ be the stationary probability of having exactly the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.

Local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.
- Let $\mathbb{P}_{\lambda, n}(\bar{w})$ be the stationary probability of having exactly the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.
- Example: let $\lambda=(2,2,1,1), n=4, \ell=2$, and $w=(2 \mid 1)$.

Configurations contributing to $\mathbb{P}_{\lambda, n}(\bar{w})$ are

$$
(2|1| 12 \mid \cdot), \quad(2|1| 1 \mid 2), \quad(2|1| 2 \mid 1), \quad(2|1| \cdot \mid 12)
$$

Local correlations

- Fix λ, n, and $0 \leq \ell \leq n$, and let w be a configuration of the TAZRP on the first ℓ sites of type μ, where $\mu \subseteq \lambda$.
- Let $\mathbb{P}_{\lambda, n}(\bar{w})$ be the stationary probability of having exactly the content w_{1}, \ldots, w_{ℓ} on sites $1, \ldots, \ell$.
- Example: let $\lambda=(2,2,1,1), n=4, \ell=2$, and $w=(2 \mid 1)$.

Configurations contributing to $\mathbb{P}_{\lambda, n}(\bar{w})$ are

$$
(2|1| 12 \mid \cdot), \quad(2|1| 1 \mid 2), \quad(2|1| 2 \mid 1), \quad(2|1| \cdot \mid 12)
$$

Theorem (Ayyer-M-Martin '22)

$\mathbb{P}_{\lambda, n}(\bar{w})$ is tcbsymmetric in the variables $\left\{x_{\ell+1}, \ldots, x_{n}\right\}$.

final remarks

- Explicit bijection from the inv to the quinv statistic?

(recently found by Loehr)
- Can we find a dynamical process that incorporates the q as a parameter?

This seems difficult because

- We lose factorization of \tilde{H}_{λ}
- We lose translation invariance
- Suitable quasisymmetric version of modified Macdonald polynomials?

Nonsymmetric version?

Modified Macdonald polynomials and the multispecies zero range process: arXiv:2011.06117, arXiv:2209.09859

