Computer algebra for the study of two-dimensional exclusion processes

Arvind Ayyer

Indian Institute of Science, Bangalore,

partly joint with P. Nadeau, Europ. J. Comb., 103 (2022) 103511

Séminaire Philippe Flajolet
Computer Algebra for Functional Equations in Combinatorics and Physics, IHP
December 7, 2023

Outline

(1) Two-dimensional disordered ASEP
(2) Steady state and the partition function
(3) Currents
(9) Scott Russell phenomenon out of equilibrium

Motivation

- Exact solutions of nonequilibium statistical mechanical models have proven useful in developing fundamental laws.
- For example, the asymmetric simple exclusion process (ASEP) in one-dimension has had remarkable success.
- The stationary distribution of the open ASEP was determined exactly by Derrida, Evans, Hakim and Pasquier (J. Phys. A, 1993) using the matrix ansatz.
- The additivity principle of Bodineau and Derrida has come out of a thorough study of the ASEP.

Motivation

- Several generalisations of the ASEP have also been solved exactly.
- For example, the steady state of the TASEP on a ring (i.e. with periodic boundary conditions) with multiple species was determined by Ferrari and Martin (Ann. Prob., 2007).
- The steady state of a disordered zero range process (LREP) with multiple species on a ring was computed by A., Martin and Mandelshtam (arXiv:2209.09859).

Motivation

- Several generalisations of the ASEP have also been solved exactly.
- For example, the steady state of the TASEP on a ring (i.e. with periodic boundary conditions) with multiple species was determined by Ferrari and Martin (Ann. Prob.,2007).
- The steady state of a disordered zero range process (LREP) with multiple species on a ring was computed by A., Martin and Mandelshtam (arXiv:2209.09859).
- However, all of these are one-dimensional models.
- Very few (if any) two-dimensional models have been solved exactly.
- Very few models with disorder have been solved exactly.

Disordered ASEP

- Evans (Europhys. Lett., 1996) considered an ASEP on a ring where the hopping rates are disordered.
- Ring of size L with n particles.
- The k 'th particle performs transitions
$\bullet \square \rightarrow \square$ - with rate p_{k},
$\square \bullet \rightarrow \bullet \quad$ with rate q_{k}.
- Since particles cannot cross each other, we label the particles $\bullet 1, \ldots, \bullet_{n}$.

Example

The configuration $\bullet_{1} \square \square \square \bullet_{2} \square \bullet 3 \square \square \bullet_{4}$ for the system with $L=10$ and $n=4$.

Results

- Evans gave a formula for the steady state using the matrix ansatz.
- He also computed the nonequilibrium partition function and the current.

Show example in Mathematica

Formulas for $L=4, n=2$

Configuration	steady state weight
$\left(\bullet_{2}, \square, \square, \bullet_{1}\right)$	$\left(p_{1}+q_{2}\right)^{2}$
$\left(\bullet_{2}, \square, \bullet_{1}, \square\right)$	$\left(p_{2}+q_{1}\right)\left(p_{1}+q_{2}\right)$
$\left(\bullet_{2}, \bullet_{1}, \square, \square\right)$	$\left(p_{2}+q_{1}\right)^{2}$

The partition function is

$$
4\left(\left(p_{1}+q_{2}\right)^{2}+\left(p_{2}+q_{1}\right)\left(p_{1}+q_{2}\right)+\left(p_{2}+q_{1}\right)^{2}\right)
$$

The two-dimensional exclusion process

- Discrete $L \times n$ torus with two kinds of particles and vacancies.
- Denote first class particles by •, second class particles by \square and vacancies by 0 .
- Let $\hat{\Omega}_{L, n}$ consist of configurations such that:
\diamond Each row contains exactly one •
\diamond Each column contains exactly one particle (either • or \square).
\diamond The columns indices of \bullet 's read from left to right form a cyclically increasing sequence.
- Thus, we have $n \bullet$'s and $L-n \square$'s.
- $\left|\hat{\Omega}_{L, n}\right|=n\binom{L}{n} n^{L-n}$.

Illustration

Forward transitions: • in row k, column j

Backward transitions: • in row k, column j

$j-1 j$

$j-1 j$

Translation invariance

Show simulations in Python, Credit: K. Ayyer

Translation invariance

Show simulations in Python, Credit: K. Ayyer

- The transitions are such that the process is invariant under horizontal translations.
- Therefore, it is enough to focus on $\omega \in \hat{\Omega}_{L, n}$ with $\omega_{1,1}=\bullet$.
- We call such configurations restricted configurations.
- For restricted configurations, the column indices of \bullet 's in ω must be a strictly increasing sequence.

Example: $L=4, n=2$

1

Example: $L=4, n=2$

1

Show example in SageMath and Mathematica, Credit: P. Nadeau

Example: $L=4, n=2$

1

Show example in SageMath and Mathematica, Credit: P. Nadeau
Can this be made faster in SageMath?

Irreducibility

Lemma

Let $L \geq 1$ and $1 \leq n<L$. If all parameters $p_{k}, q_{k}>0$, the exclusion process on $\hat{\Omega}_{L, n}$ is irreducible.

As a consequence, the steady state is unique.

Weights of configurations

- Let $\omega \in \hat{\Omega}_{L, n}$ be a restricted configuration.
- Let the locations of the 1 's in ω by $\left(\left(1, a_{1}\right), \ldots,\left(n, a_{n}\right)\right)$, where $1=a_{1}<\cdots<a_{n}$.
- Let $C_{k} \equiv C_{k}(\omega)$ be the set of those positions (i, j) with $a_{k}<j<a_{k+1}$ such that $\omega(i, j)=\square$.
- We will assign a weight to every 0 lying in such a column.
- This weight will either be p_{j} or q_{j} if the 0 is in row j.

Weights of configurations

- Suppose $(i, j) \in C_{k}$.
- Two possibilities, depending on the relative order of i with respect to k :

$$
\begin{gathered}
\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{i-1} \\
\square \\
q_{i+1} \\
\vdots \\
q_{k} \\
p_{k+1} \\
\vdots \\
p_{n}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{c}
q_{1} \\
\vdots \\
q_{k} \\
p_{k+1} \\
\vdots \\
p_{i-1} \\
\square \\
q_{i+1} \\
\vdots \\
q_{n}
\end{array}\right) \\
i>k
\end{gathered}
$$

Weights of configurations

- The weight associated to this \square is

$$
w_{\square}(i, k)= \begin{cases}p_{1} \ldots p_{i-1} q_{i+1} \ldots q_{k} p_{k+1} \ldots p_{n} & 1 \leq i \leq k \\ q_{1} \ldots q_{k} p_{k+1} \ldots p_{i-1} q_{i+1} \ldots q_{n} & k<i \leq n\end{cases}
$$

- The weight $\operatorname{wt}(\omega)$ of $\omega \in \hat{\Omega}_{L, n}$ is

$$
w t(\omega)=\prod_{k=1}^{n} \prod_{(i, j) \in C_{k}} w_{\square}(i, k) .
$$

Example

- The weight of the configuration in the above figure is

$$
\begin{aligned}
\underbrace{\left(q_{4} q_{1} p_{2}\right)^{2}\left(q_{1} p_{2} p_{3}\right)}_{C_{1}} \underbrace{\left(p_{3} p_{4} p_{1}\right)}_{C_{2}} \underbrace{\left(p_{4} p_{1} p_{2}\right)}_{C_{3}} & \underbrace{\left(q_{2} q_{3} q_{4}\right)}_{C_{4}} \\
& =p_{1}^{2} p_{2}^{4} p_{3}^{2} p_{4}^{2} q_{1}^{3} q_{2} q_{3} q_{4}^{3}
\end{aligned}
$$

Steady state

Let the steady state probabilities in $\hat{\Omega}_{L, n}$ be denoted by $\hat{\pi}$.

Theorem (A. \& P. Nadeau, Europ. J. Comb., 2022)

- Suppose $p_{k}, q_{k}>0$ for $1 \leq k \leq n$.
- Then the stationary probability of the configuration ω for the exclusion process on $\hat{\Omega}_{L, n}$ given by

$$
\hat{\pi}(\omega)=\frac{\mathrm{wt}(\omega)}{L Z_{L, n}} .
$$

- Here $Z_{L, n}$ is the restricted (nonequilibrium) partition function,

$$
Z_{L, n}=\sum_{\substack{\omega \in \hat{\Omega}_{L, n} \\ \omega_{1,1}=1}} w t(\omega)
$$

Idea of proof: Verify the master equation.

Restricted partition function

Set

$$
W_{\square}(k)=\sum_{j=1}^{n} w_{\square}(j, k) .
$$

Corollary

The restricted partition function $Z_{L, n}$ is given by:

$$
Z_{L, n}=\left[x^{L-n}\right] \prod_{k=1}^{n} \frac{1}{1-W_{\square}(k) x}
$$

Special cases

Define the (p, q)-analogue of an integer $n \in \mathbb{N}$ as

$$
[n]_{p, q}=p^{n-1}+p^{n-2} q+\cdots+q^{n-1}
$$

Corollary

If $p_{i}=p$ and $q_{i}=q$ for all i, then

$$
Z_{L, n}=\binom{L-1}{n-1}[n]_{p, q}^{L-n} .
$$

Special cases

Recall that the elementary symmetric polynomial $e_{k}\left(x_{1}, \ldots, x_{j}\right)$, for $1 \leq k \leq j$, is given by

$$
\begin{equation*}
e_{k}\left(x_{1}, \ldots, x_{j}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq j} x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}} . \tag{1}
\end{equation*}
$$

Corollary
If $q_{i}=p_{i}$ for all i, then

$$
Z_{L, n}=\binom{L-1}{n-1} e_{n-1}\left(p_{1}, \ldots, p_{n}\right)^{L-n}
$$

Extra symmetry!

A useful lemma

Lemma

The weights associated to \square 's satisfy

$$
p_{k} w_{\square}(i, k)-q_{k} w_{\square}(i, k-1)= \begin{cases}0 & i \neq k, \\ p_{1} \cdots p_{n}-q_{1} \cdots q_{n} & i=k .\end{cases}
$$

Easily verified!

Current of •'s

- Since particles of type - only travel horizontally, we can only talk about horizontal currents for these.
- Let J. denote the current for the particle of type - on the i 'th row in the steady state.
- By particle conservation, this is independent of the choice of edge.
- Since •'s in successive rows cannot overtake each other, J • is independent of i.

Current of •'s

Theorem (Evans 1995, A. \& P. Nadeau, Europ. J. Comb., 2022)
For $1 \leq i \leq n$, we have

$$
J_{\bullet}=\left(p_{1} \ldots p_{n}-q_{1} \ldots q_{n}\right) \frac{Z_{L-1, n}}{L Z_{L, n}}
$$

Evans gave the same formula for the 1D ASEP (in slightly different language).

Horizontal current of a's

- The \square 's travel both horizontally and vertically.
- So we can talk about two kinds of currents.
- In the horizontal direction, their motion can be both local and nonlocal.
- Let $J_{\square}^{\mathrm{h}}(j)$ denote the horizontal current of \square 's crossing columns j and $j+1$.

Theorem (A. \& P. Nadeau, Europ. J. Comb., 2022)

For any $j \in[L]$,

$$
J_{\square}^{h}(j)=-n\left(p_{1} \cdots p_{n}-q_{1} \cdots q_{n}\right) \frac{Z_{L-1, n}}{L Z_{L, n}} .
$$

Vertical current of a's

- In the vertical direction, the motion of \square 's is always nonlocal.
- So, we cannot talk about the current across any one vertical edge.
- We will instead define the upward current J_{\square}^{i+} between rows i and $i-1$, which occurs only with a forward transition of a • to its left in the same row.
- Similarly, the downward current J_{\square}^{i-} between rows i and $i+1$ only occurs with a reverse transition of a \bullet to its right in the same row.
- The net vertical current between rows i and $i+1$ is

$$
J_{\square}^{i}=J_{\square}^{i+}-J_{\square}^{(i+1)-} .
$$

Vertical current of a's

Theorem (A. \& P. Nadeau, Europ. J. Comb., 2022)
We have

$$
J_{\square}^{i+}=p_{1} \ldots p_{n} \frac{Z_{L-1, n}}{L Z_{L, N}}, \quad J_{\square}^{i-}=q_{1} \ldots q_{n} \frac{Z_{L-1, n}}{L Z_{L, N}}
$$

Corollary
The vertical current of \square 's between rows i and $i+1$ is the same as the horizontal current of 1 's, i.e.

$$
J_{\square}^{i}=J_{\bullet} .
$$

Scott Russell linkage

Scott Russell phenomenon

- In our 2D ASEP, horizontal motion of •'s gives rise to vertical motion of \square 's.
- We call this the microscopic Scott Russell (linkage) phenomenon.
- This is a manifestly two-dimensional phenomenon.
- A Scott Russell linkage is a mechanism for transferring linear motion in one direction to a perpendicular direction.
- It is named after John Scott Russell, a Scottish civil engineer.
- It is a standard piece of equipment in most cars today.
- His other claim to fame is ...

Report on Waves, Sep. 1844

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.

Image of a solitary wave

Wales_Order I. The Gruat Wave of Translation

Out of equilibrium

- A natural question is whether the Scott Russell phenomenon holds only in steady state or out of it.
- It trivially holds when all $q_{i}=0$ because each \bullet jump causes a \square jump.

Out of equilibrium

- A natural question is whether the Scott Russell phenomenon holds only in steady state or out of it.
- It trivially holds when all $q_{i}=0$ because each \bullet jump causes a \square jump.

Show simulations in Python

Large deviation function

- We want to show that the large deviation functions (LDFs) of both J_{0} and J_{\square} are the same.
- We can study these with the help of the Gärtner-Ellis theorem.
- Construct the tilted generators by multiplying the transitions which correspond to the observable by e^{λ}.
- By the Perron-Frobenius theorem, the largest eigenvalue is unique.
- The Legendre transform of the logarithm of this eigenvalue gives the LDF.

Tilted generators

- In general, it is difficult to show that two matrices have the same largest eigenvalues

Tilted generators

- In general, it is difficult to show that two matrices have the same largest eigenvalues

Show examples in SageMath

Intertwiner

- Fix L and n as before.
- For $1 \leq i \leq n$, let λ_{i} record the transitions for the horizontal (resp. vertical) current of \bullet 's (resp. \square 's) in row i (resp. between rows i and $i+1$).
- Let M_{\bullet} and M_{\square} be the tilted generators for the currents J_{\bullet} and J_{\square} respectively depending on parameters $\lambda_{1}, \ldots, \lambda_{n}$.

Theorem (A., 2023+)

There exists a diagonal matrix I such that $I M_{1}=M_{2} I$.

