Computer algebra for the study of two-dimensional exclusion processes

Arvind Ayyer Indian Institute of Science, Bangalore,

partly joint with P. Nadeau, Europ. J. Comb., **103** (2022) 103511

Séminaire Philippe Flajolet Computer Algebra for Functional Equations in Combinatorics and Physics, IHP

December 7, 2023

< □ > < @ > < 注 > < 注 > ... 注

*ロ * * ● * * ● * * ● * ● * ● * ●

- Two-dimensional disordered ASEP
- Steady state and the partition function
- Ourrents
- Scott Russell phenomenon out of equilibrium

2D ASEP	Steady state	Currents	Scott Russell phenomenon
•0000000000	00000000	000000000	
Motivation			

- Exact solutions of nonequilibium statistical mechanical models have proven useful in developing fundamental laws.
- For example, the asymmetric simple exclusion process (ASEP) in one-dimension has had remarkable success.
- The stationary distribution of the open ASEP was determined exactly by Derrida, Evans, Hakim and Pasquier (J. Phys. A, 1993) using the matrix ansatz.
- The additivity principle of Bodineau and Derrida has come out of a thorough study of the ASEP.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

2D ASEP	Steady state	Currents	Scott Russell phenomenon
o●oooooooooo	00000000	000000000	
Motivation			

- Several generalisations of the ASEP have also been solved exactly.
- For example, the steady state of the TASEP on a ring (i.e. with periodic boundary conditions) with multiple species was determined by Ferrari and Martin (Ann. Prob., 2007).
- The steady state of a disordered zero range process (LREP) with multiple species on a ring was computed by A., Martin and Mandelshtam (arXiv:2209.09859).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

2D ASEP	Steady state	Currents	Scott Russell phenomenon
0●0000000000	00000000	000000000	
Motivation			

- Several generalisations of the ASEP have also been solved exactly.
- For example, the steady state of the TASEP on a ring (i.e. with periodic boundary conditions) with multiple species was determined by Ferrari and Martin (Ann. Prob., 2007).
- The steady state of a disordered zero range process (LREP) with multiple species on a ring was computed by A., Martin and Mandelshtam (arXiv:2209.09859).
- However, all of these are one-dimensional models.
- Very few (if any) two-dimensional models have been solved exactly.
- Very few models with disorder have been solved exactly.

- Evans (*Europhys. Lett.*, 1996) considered an ASEP on a ring where the hopping rates are disordered.
- Ring of size *L* with *n* particles.
- The k'th particle performs transitions

• $\Box \rightarrow \Box$ • with rate p_k , $\Box \bullet \rightarrow \bullet \Box$ with rate q_k .

Since particles cannot cross each other, we label the particles
 ●1,...,●n.

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	000000000	000000000	
Example			

The configuration $\bullet_1 \Box \Box \Box \bullet_2 \Box \bullet_3 \Box \Box \bullet_4$ for the system with L = 10and n = 4.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	000000000	000000000	
Results			

- Evans gave a formula for the steady state using the matrix ansatz.
- He also computed the nonequilibrium partition function and the current.

Show example in Mathematica

・ロト・日本・モト・モー・ しょうくの

2D ASEP	Steady state 000000000	Currents 000000000	Scott Russell phenomenon
Formulas for $L =$	= 4, <i>n</i> = 2		

Configuration	steady state weight
$(ullet_2,\Box,\Box,ullet_1)$	$(p_1 + q_2)^2$
$(ullet_2,\Box,ullet_1,\Box)$	$(p_2+q_1)(p_1+q_2)$
$(ullet_2,ullet_1,\Box,\Box)$	$(p_2 + q_1)^2$

The partition function is

$$4\left((p_1+q_2)^2+(p_2+q_1)(p_1+q_2)+(p_2+q_1)^2
ight).$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

- Discrete $L \times n$ torus with two kinds of particles and vacancies.
- Denote first class particles by ●, second class particles by □ and vacancies by 0.
- Let $\hat{\Omega}_{L,n}$ consist of configurations such that:
 - ♦ Each row contains exactly one ●.
 - ♦ Each column contains exactly one particle (either or \Box).
 - The columns indices of •'s read from left to right form a cyclically increasing sequence.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• Thus, we have $n \bullet$'s and $L - n \Box$'s.

•
$$|\hat{\Omega}_{L,n}| = n {L \choose n} n^{L-n}.$$

2D ASEP 0000000000000	Steady state 000000000	Currents 000000000	Scott Russell phenomenon
Illustration			

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

2D ASEP

Forward transitions: • in row k, column j

 $j \ j + 1$

 $j \ j + 1$

2D ASEP 00000000000000 Backward transitions: • in row k, column j

j-1 j

2D ASEP 0000000000000000 Steady state

Currents

Scott Russell phenomenon

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Translation invariance

Show simulations in Python, Credit: K. Ayyer

Translation invariance

Show simulations in Python, Credit: K. Ayyer

- The transitions are such that the process is invariant under horizontal translations.
- Therefore, it is enough to focus on $\omega \in \hat{\Omega}_{L,n}$ with $\omega_{1,1} = \bullet$.
- We call such configurations restricted configurations.
- For restricted configurations, the column indices of •'s in ω must be a strictly increasing sequence.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Show example in SageMath and Mathematica, Credit: P. Nadeau

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Show example in SageMath and Mathematica, Credit: P. Nadeau

Can this be made faster in SageMath?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

2D ASEP 00000000000	Steady state •00000000	Currents 000000000	Scott Russell phenomenon
Irreducibility			

Lemma

Let $L \ge 1$ and $1 \le n < L$. If all parameters $p_k, q_k > 0$, the exclusion process on $\hat{\Omega}_{L,n}$ is irreducible.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

As a consequence, the steady state is unique.

Weights of	configurations		
2D ASEP 000000000000	Steady state	Currents 000000000	Scott Russell phenomenon

- Let $\omega \in \hat{\Omega}_{L,n}$ be a restricted configuration.
- Let the locations of the 1's in ω by $((1, a_1), \ldots, (n, a_n))$, where $1 = a_1 < \cdots < a_n$.
- Let $C_k \equiv C_k(\omega)$ be the set of those positions (i,j) with $a_k < j < a_{k+1}$ such that $\omega(i,j) = \Box$.
- We will assign a weight to every 0 lying in such a column.

(日) (日) (日) (日) (日) (日) (日) (日)

• This weight will either be p_j or q_j if the 0 is in row j.

Weights of	configurations		
2D ASEP 00000000000	Steady state	Currents 000000000	Scott Russell phenomenon

- Suppose $(i,j) \in C_k$.
- Two possibilities, depending on the relative order of *i* with respect to *k*:

$\left(\begin{array}{c}p_1\end{array}\right)$		$\left(\begin{array}{c} q_1 \end{array}\right)$
÷		÷
<i>p</i> _{<i>i</i>-1}		q_k
		p_{k+1}
q_{i+1}	or	÷
÷	01	p_{i-1}
q_k		
p_{k+1}		q_{i+1}
÷		÷
p_n		$\langle q_n \rangle$
$i \leq k$		i > k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $\bullet\,$ The weight associated to this \Box is

$$w_{\Box}(i,k) = \begin{cases} p_1 \dots p_{i-1}q_{i+1} \dots q_k p_{k+1} \dots p_n & 1 \le i \le k, \\ q_1 \dots q_k p_{k+1} \dots p_{i-1}q_{i+1} \dots q_n & k < i \le n. \end{cases}$$

• The weight wt(ω) of $\omega \in \hat{\Omega}_{L,n}$ is

$$\operatorname{wt}(\omega) = \prod_{k=1}^{n} \prod_{(i,j)\in C_k} w_{\Box}(i,k).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	0000€0000	000000000	
Example			

• The weight of the configuration in the above figure is

$$\underbrace{\underbrace{(q_4q_1p_2)^2(q_1p_2p_3)}_{C_1}\underbrace{(p_3p_4p_1)}_{C_2}\underbrace{(p_4p_1p_2)}_{C_3}\underbrace{(q_2q_3q_4)}_{C_4}}_{=p_1^2p_2^4p_3^2p_4^2q_1^3q_2q_3q_4^3}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Steady state			
2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	000000000	000000000	

Let the steady state probabilities in $\hat{\Omega}_{L,n}$ be denoted by $\hat{\pi}$.

Theorem (A. & P. Nadeau, Europ. J. Comb., 2022)

• Suppose $p_k, q_k > 0$ for $1 \le k \le n$.

• Then the stationary probability of the configuration ω for the exclusion process on $\hat{\Omega}_{L,n}$ given by

$$\hat{\pi}(\omega) = rac{\mathsf{wt}(\omega)}{L \, Z_{L,n}}.$$

• Here Z_{L,n} is the restricted (nonequilibrium) partition function,

$$Z_{L,n} = \sum_{\substack{\omega \in \hat{\Omega}_{L,n} \\ \omega_{1,1}=1}} \operatorname{wt}(\omega).$$

Idea of proof: Verify the master equation.

Restricted partition function

Set

$$W_{\Box}(k) = \sum_{j=1}^{n} w_{\Box}(j,k).$$

Corollary

The restricted partition function $Z_{L,n}$ is given by:

$$Z_{L,n} = [x^{L-n}] \prod_{k=1}^{n} \frac{1}{1 - W_{\Box}(k)x}$$

Special cases			
2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	0000000€0	000000000	

Define the (p, q)-analogue of an integer $n \in \mathbb{N}$ as

$$[n]_{p,q} = p^{n-1} + p^{n-2}q + \dots + q^{n-1}.$$

Corollary

If $p_i = p$ and $q_i = q$ for all i, then

$$Z_{L,n} = \binom{L-1}{n-1} [n]_{p,q}^{L-n}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	00000000●	000000000	
Special cases			

Recall that the elementary symmetric polynomial $e_k(x_1, ..., x_j)$, for $1 \le k \le j$, is given by

$$e_k(x_1,...,x_j) = \sum_{1 \le i_1 < i_2 < \cdots < i_k \le j} x_{i_1} x_{i_2} \dots x_{i_k}.$$
 (1)

*ロ * * ● * * ● * * ● * ● * ● * ●

Corollary

If $q_i = p_i$ for all *i*, then

$$Z_{L,n}=\binom{L-1}{n-1}e_{n-1}(p_1,\ldots,p_n)^{L-n}.$$

Extra symmetry!

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	00000000	●000000000	
A useful lemma			

Lemma

The weights associated to \Box 's satisfy

$$p_k w_{\Box}(i,k) - q_k w_{\Box}(i,k-1) = \begin{cases} 0 & i \neq k, \\ p_1 \cdots p_n - q_1 \cdots q_n & i = k. \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Easily verified!

00000000000	000000000	000000000	00000
Current of \bullet 's			

- Since particles of type only travel horizontally, we can only talk about horizontal currents for these.
- Let J_{\bullet} denote the current for the particle of type \bullet on the *i*'th row in the steady state.
- By particle conservation, this is independent of the choice of edge.
- Since •'s in successive rows cannot overtake each other, J_{\bullet} is independent of *i*.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

2D ASEP 00000000000000

Current of •'s

Steady state

Currents 000000000 Scott Russell phenomenon

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Theorem (Evans 1995, A. & P. Nadeau, Europ. J. Comb., 2022)

For $1 \leq i \leq n$, we have

$$J_{\bullet} = (p_1 \dots p_n - q_1 \dots q_n) \frac{Z_{L-1,n}}{L Z_{L,n}}.$$

Evans gave the same formula for the 1D ASEP (in slightly different language).

0000000000	00000000	000000000	00000
Horizontal curre	nt of ⊡′s		

- The \square 's travel both horizontally and vertically.
- So we can talk about two kinds of currents.
- In the horizontal direction, their motion can be both local and nonlocal.
- Let J^h_□(j) denote the horizontal current of □'s crossing columns j and j + 1.

Theorem (A. & P. Nadeau, Europ. J. Comb., 2022)

For any $j \in [L]$,

$$J^h_{\square}(j) = -n(p_1 \cdots p_n - q_1 \cdots q_n) \frac{Z_{L-1,n}}{LZ_{L,n}}.$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- In the vertical direction, the motion of \Box 's is always nonlocal.
- So, we cannot talk about the current across any one vertical edge.
- We will instead define the upward current Jⁱ⁺_□ between rows i and i − 1, which occurs only with a forward transition of a to its left in the same row.
- Similarly, the downward current J^{i−}_□ between rows i and i + 1 only occurs with a reverse transition of a • to its right in the same row.

• The net vertical current between rows i and i + 1 is $J^i_{\Box} = J^{i+}_{\Box} - J^{(i+1)-}_{\Box}$.

Vertical current	of ⊓'s		
2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	000000000	0000000000	

Theorem (A. & P. Nadeau, Europ. J. Comb., 2022)

We have

$$J_{\Box}^{i+} = p_1 \dots p_n \frac{Z_{L-1,n}}{LZ_{L,N}}, \quad J_{\Box}^{i-} = q_1 \dots q_n \frac{Z_{L-1,n}}{LZ_{L,N}},$$

Corollary

The vertical current of \Box 's between rows i and i + 1 is the same as the horizontal current of 1's, i.e.

$$J_{\Box}^{i}=J_{\bullet}.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 2D ASEP
 Steady state
 Currents
 Scott Russell phenomenon

 Scott Russell linkage

Scott Russell	nhenomenon		
00000000000	00000000	0000000000	00000
2D ASEP	Steady state	Currents	Scott Russell phenomenon

- In our 2D ASEP, horizontal motion of ●'s gives rise to vertical motion of □'s.
- We call this the microscopic Scott Russell (linkage) phenomenon.
- This is a manifestly two-dimensional phenomenon.
- A Scott Russell linkage is a mechanism for transferring linear motion in one direction to a perpendicular direction.
- It is named after John Scott Russell, a Scottish civil engineer.
- It is a standard piece of equipment in most cars today.
- His other claim to fame is ...

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	000000000	00000000●0	
Report on W	Vaves, Sep.	1844	

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.

 2D ASEP
 Steady state
 Currents
 Scott Russell phenomenon

 cooocococo
 cooocococo
 cooocococo
 cooocococo

 Image of a solitary wave
 cooocococo
 cooococococo

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	000000000	000000000	●0000
Out of equilibriu	m		

- A natural question is whether the Scott Russell phenomenon holds only in steady state or out of it.
- It trivially holds when all $q_i = 0$ because each jump causes a \Box jump.

*ロ * * ● * * ● * * ● * ● * ● * ●

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	000000000	000000000	●0000
Out of equilibriu	m		

- A natural question is whether the Scott Russell phenomenon holds only in steady state or out of it.
- It trivially holds when all $q_i = 0$ because each jump causes a \Box jump.

(日) (日) (日) (日) (日) (日) (日) (日)

Show simulations in Python

Large deviation	function		
2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	00000000	000000000	

- We want to show that the large deviation functions (LDFs) of both J_● and J_□ are the same.
- We can study these with the help of the Gärtner-Ellis theorem.
- Construct the tilted generators by multiplying the transitions which correspond to the observable by e^{λ} .
- By the Perron–Frobenius theorem, the largest eigenvalue is unique.
- The Legendre transform of the logarithm of this eigenvalue gives the LDF.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

2D ASEP	Steady state	Currents	Scott Russell phenomenon		
00000000000	000000000	000000000			
Tilted generators					

• In general, it is difficult to show that two matrices have the same largest eigenvalues

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	00000000	000000000	
Tilted generator			

• In general, it is difficult to show that two matrices have the same largest eigenvalues

Show examples in SageMath

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

2D ASEP	Steady state	Currents	Scott Russell phenomenon
00000000000	00000000	000000000	000●0
Intertwiner			

- Fix *L* and *n* as before.
- For 1 ≤ i ≤ n, let λ_i record the transitions for the horizontal (resp. vertical) current of •'s (resp. □'s) in row i (resp. between rows i and i + 1).
- Let M_● and M_□ be the tilted generators for the currents J_● and J_□ respectively depending on parameters λ₁,..., λ_n.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Theorem (A., 2023+)

There exists a diagonal matrix I such that $IM_1 = M_2I$.

2D ASEP 000000000000000 Steady state

Currents 0000000000 Scott Russell phenomenon 0000