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In this talk

Computer algebra in the solution of a counting problem
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In this talk

Computer algebra in the solution of a counting problem

Examples
Questions

Three objectives



I. From objects to numbers
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Setting

Let A be a set of discrete objects, equipped with an integer size such 
that the number a(n) of objects of size n is finite for any n.
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Objective: generate a(1), a(2), … , a(N) for N large.

Setting

Let A be a set of discrete objects, equipped with an integer size such 
that the number a(n) of objects of size n is finite for any n.
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Case 1: when no recurrence relation is known
Generate numbers (and often objects) by any possible recursive 
construction
• Generating trees: add a step, an edge, a node...
• Transfer matrices: add a layer      
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Self-avoiding walks 

Case 1: when no recurrence relation is known

[Enting, Guttmann]
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Self-avoiding walks 

Case 1: when no recurrence relation is known

Question: is there a sub-exponential algorithm that computes 
the number of self-avoiding walks of length n?

[Enting, Guttmann]
So far, n=79 [Jensen 13(a)]
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… often encoded as a functional equation for the associated 
generating function:

Multivariate enumeration: record additional statistics

Case 2: with a recurrence relation
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… often encoded as a functional equation for the associated 
generating function:

Multivariate enumeration: record additional statistics

Case 2: with a recurrence relation

A rich zoo of 
equations
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Functional equations: our pet animals

● Rational

● Algebraic

● D-finite

● D-algebraic
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Functional equations: our pet animals

● Rational

● Algebraic

● D-finite

● D-algebraic

Several variables: one DE per variable
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Functional equations: our pet animals

● Rational

● Algebraic

● D-finite

● D-algebraic

Several variables: one DE per variable

coeffs. in 
linear time



15

Substitutions: set partitions

q-Equations: Dyck paths by length (t) and area (q)

More exotic animals
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Substitutions: set partitions

q-Equations: Dyck paths by length (t) and area (q)

More exotic animals
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Substitutions: set partitions

q-Equations: Dyck paths by length (t) and area (q)

Discrete derivatives: quadrant walks

More exotic animals

(i,j)
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Substitutions: set partitions

q-Equations: Dyck paths by length (t) and area (q)

Discrete derivatives: quadrant walks

or

More exotic animals

(i,j)

x, y: catalytic variables
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Discrete derivatives and q-equations: Tamari intervals on Dyck paths 
[mbm, Fusy, Prévil le-Ratelle 11]

Hybrids
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Discrete derivatives and q-equations: Tamari intervals on Dyck paths 
[mbm, Fusy, Prévil le-Ratelle 11]

Substitutions in “catalytic” variables: bipartite quadrangulations by 
edges (t) and vertices (x), arbitrary genus                        [Louf 21]

where D= t d/dt and A(x)=A(t,x).

Hybrids
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With a recurrence relation/fixed point equation

● Coefficients in polynomial time
● Newton iteration [Pivoteau, Salvy & Soria 12]
● Work with the recurrence relation? With the functional 

equation?
● Work modulo primes?



22

Produce numbers: why?

• Predict asymptotic behaviour
Example: 1324-avoiding permutations     [Conway & Guttmann 15]

(50 terms known)

• Conjecture (simpler) recurrence relations or functional equations
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An automatized construction of recurrence relations for some 
combinatorial classes.
“The Combinatorial Exploration framework produces rigorously 
verified combinatorial specifications for families of combinatorial 
objects. These specifications then lead to generating functions, 
counting sequence, polynomial-time counting algorithms, random 
sampling procedures, and more.”

Interlude: Combinatorial exploration

[Albert, Bean, Claesson, Nadeau, 
Pantone & Ulfarsson 22(a)]

https://arxiv.org/abs/2202.07715
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An automatized construction of recurrence relations for some 
combinatorial classes.

Interlude: Combinatorial exploration

[PermPAL database]
Permutation Pattern Avoidance Library

Ex. 1234-avoiding permutations 

[Albert, Bean, Claesson, Nadeau, 
Pantone & Ulfarsson 22(a)]



II. Guess
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Objective: guess a recurrence relation for a(n) 
from the knowledge of a(1), a(2), … , a(N).

Setting

Let a(n) be the number of objects of size n in the set 𝒜.

1
2
3

1 2 3

4
5
6
7
8
9

4 5 6 7 8 9

(i,j)



27

Hermite-Padé approximants for linear relations
Given the first coefficients ai(0), ai(1), …, ai(n) of k series Ai(t), i=1, …, k,  
find polynomials P1(t), …, Pk(t) of small degree such that
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Hermite-Padé approximants for linear relations
Given the first coefficients ai(0), ai(1), …, ai(n) of k series Ai(t), i=1, …, k,  
find polynomials P1(t), …, Pk(t) of small degree such that

⇒ Needs about n = kd coefficients in each series to guess an equation 
with deg(Pi) <d.
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Hermite-Padé approximants for linear relations
Given the first coefficients ai(0), ai(1), …, ai(n) of k series Ai(t), i=1, …, k,  
find polynomials P1(t), …, Pk(t) of small degree such that

⇒ Needs about n = kd coefficients in each series to guess an equation 
with deg(Pi) <d.

Example: a quadratic q-equation of order 2 corresponds to k=10 series
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Hermite-Padé approximants for linear relations
Given the first coefficients ai(0), ai(1), …, ai(n) of k series Ai(t), i=1, …, k,  
find polynomials P1(t), …, Pk(t) of small degree such that

⇒ Needs about n = kd coefficients in each series to guess an equation 
with deg(Pi) <d.

Example: a quadratic q-equation of order 2 corresponds to k=10 series

A q-equation of order e and degree δ (in A):
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Hermite-Padé approximants for linear relations
Given the first coefficients ai(0), ai(1), …, ai(n) of k series Ai(t), i=1, …, k,  
find polynomials P1(t), …, Pk(t) of small degree such that

⇒ Needs about n = kd coefficients in each series to guess an equation 
with deg(Pi) <d.

Example: a quadratic q-equation of order 2 corresponds to k=10 series

A q-equation of order e and degree δ (in A):
Same for an ODE of order e and degree δ.    
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Hermite-Padé approximants for linear relations
Given the first coefficients ai(0), ai(1), …, ai(n) of k series Ai(t), i=1, …, k,  
find polynomials P1(t), …, Pk(t) of small degree such that

⇒ Needs about n = kd coefficients in each series to guess an equation 
with deg(Pi) <d.

Example: a quadratic q-equation of order 2 corresponds to k=10 series

A q-equation of order e and degree δ (in A):
Same for an ODE of order e and degree δ.    

numapprox[hermite_pade]



33

• Guess polynomial equations (degree δ): linear relation between

             gfun[seriestoalgeq]          [Salvy 94  ]→

• Guess linear differential equations (order e): linear relation between

            gfun[seriestodiffeq]

• Guess polynomial differential equations (order e, degree δ):
requires               series. 

             FPS[delta2guess]              [Teguia 23, Pantone 24+]

Special types of functional equations
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Example 1: in the 60’s, Tutte and planar maps 
Equation with a discrete derivative: planar maps by edges (t) and 
degree of the root vertex (x):
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Example 1: in the 60’s, Tutte and planar maps 
Equation with a discrete derivative: planar maps by edges (t) and 
degree of the root vertex (x):

Algebraic guess for A(1):
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Example 1: in the 60’s, Tutte and planar maps 
Equation with a discrete derivative: planar maps by edges (t) and 
degree of the root vertex (x):

Algebraic guess for A(1):

⇒ a guess for A(x) as an algebraic series of degree 4:



37

Example 2: Gessel’s quadrant walks 
Equation with two discrete derivatives: 
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Example 2: Gessel’s quadrant walks 
Equation with two discrete derivatives: 

Gessel’s ex-conjecture (~2000)

with
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Example 2: Gessel’s quadrant walks 
Equation with two discrete derivatives: 

Gessel’s ex-conjecture (~2000)

with

Later… Q(0,0) satisfies an polynomial equation Pol(t,Q)= 0,                 

of bidegree (7,8)                                          [Bostan & Kauers 10]
(+ Proof of the algebraicity of Q(x,y))
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Example 3: bipartite quadrangulations, any genus
Substitutions in “catalytic” variables:                                [Louf 21]

where D= t d/dt  (plus value at x=1).
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Example 3: bipartite quadrangulations, any genus
Substitutions in “catalytic” variables:                                [Louf 21]

where D= t d/dt  (plus value at x=1).

Guess: a quadratic, third order ODE in t

Proof [Carrell & Chapuy 15]



III. Prove
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Setting
So far: a functional equation (E1) for A(t,x,y...), possibly wild

Guessed: a simpler equation (E2) for A(t,x,y...)

Two ingredients:
• Uniqueness of solution in (E1)
• Closure properties of a class containing (E2)



44

Example 1: a big algebraic system
King walks avoiding the negative quadrant           [mbm & Wallner 23]
(E1) A system of 4 polynomial equations in 4 series R0, R1, B1, B2
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Example 1: a big algebraic system
King walks avoiding the negative quadrant           [mbm & Wallner 23]
(E1) A system of 4 polynomial equations in 4 series R0, R1, B1, B2

(E2) Guessed minimal polynomials for all four series, and rational 
expressions in terms of two “simple” series T and U (deg. 12, 24).
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Example 1: a big algebraic system
King walks avoiding the negative quadrant           [mbm & Wallner 23]
(E1) A system of 4 polynomial equations in 4 series R0, R1, B1, B2

(E2) Guessed minimal polynomials for all four series, and rational 
expressions in terms of two “simple” series T and U (deg. 12, 24).

thanks to Mark van Hoeij !
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Example 1: a big algebraic system
King walks avoiding the negative quadrant           [mbm & Wallner 23]
(E1) A system of 4 polynomial equations in 4 series R0, R1, B1, B2

(E2) Guessed minimal polynomials for all four series, and rational 
expressions in terms of two “simple” series T and U (deg. 12, 24).

Plug in (E1) and check by reduction mod minimal polynomials of T and U.
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Example 2: in the 60’s, Tutte and planar maps 
Planar maps by edges (t) and degree of the root vertex (x):

Uniqueness: there exists a unique solution A(x) that is a formal 
power series in t. Its coefficients are polynomials in x.
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Example 2: in the 60’s, Tutte and planar maps 
Planar maps by edges (t) and degree of the root vertex (x):

Uniqueness: there exists a unique solution A(x) that is a formal 
power series in t. Its coefficients are polynomials in x.

Guessing for A(1):
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Example 2: in the 60’s, Tutte and planar maps 
Planar maps by edges (t) and degree of the root vertex (x):

Uniqueness: there exists a unique solution A(x) that is a formal 
power series in t. Its coefficients are polynomials in x.

Guessing for A(1):

⇒ a guess for A(x) as an algebraic series of degree 4:



51To do: prove that          has polynomial coeffs. in x, so that

Example 2: in the 60’s, Tutte and planar maps 
Planar maps by edges (t) and degree of the root vertex (x):

Uniqueness: there exists a unique solution A(x) that is a formal 
power series in t. Its coefficients are polynomials in x.

Guessing for A(1):

⇒ a guess for A(x) as an algebraic series of degree 4:
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Example 2: in the 60’s, Tutte and planar maps 
Planar maps by edges (t) and degree of the root vertex (x):

Uniqueness: there exists a unique solution A(x) that is a formal 
power series in t. Its coefficients are polynomials in x.

Guessing for A(1):

⇒ a guess for A(x) as an algebraic series of degree 4:

         or
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Two discrete derivatives:

where A(x)=txQ(x,0).

Example 3: Kreweras’ walks in the quadrant

 [Bostan & Kauers 10]
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Two discrete derivatives:

where A(x)=txQ(x,0).

Uniqueness: A(x) is the only series in t with polynomial coefficients    
in x solving

where Y(x) is the only root of the kernel that is a formal series in t. 

Example 3: Kreweras’ walks in the quadrant

 [Bostan & Kauers 10]

(E1)
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Two discrete derivatives:

where A(x)=txQ(x,0).

Uniqueness: A(x) is the only series in t with polynomial coefficients    
in x solving

where Y(x) is the only root of the kernel that is a formal series in t. 

Guess: a polynomial equation (E2) of degree 6 defining a series        .

Example 3: Kreweras’ walks in the quadrant

 [Bostan & Kauers 10]

(E1)
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Two discrete derivatives:

where A(x)=txQ(x,0).

Uniqueness: A(x) is the only series in t with polynomial coefficients    
in x solving

where Y(x) is the only root of the kernel that is a formal series in t. 

Guess: a polynomial equation (E2) of degree 6 defining a series        .

To do: 
• Prove that         has polynomial coefficients in x.
•  Prove that (E1) holds for           by computing a polynomial annihilating 
the rhs of (E1), and checking first coefficients.

Example 3: Kreweras’ walks in the quadrant

 [Bostan & Kauers 10]

(E1)
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Two discrete derivatives:

where A(x) ≈  Q(x,0) and B(y) ≈ Q(0,y).

Example 4: more walks in the quadrant

 [Bostan & Kauers 10]
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Two discrete derivatives:

where A(x) ≈  Q(x,0) and B(y) ≈ Q(0,y).
Uniqueness: A(x), B(y) are the series in t with polynomial coefficients 
solving
                                                                                                     
where X(y) (resp. Y(x)) is the only root of K that is a formal series in t. 

Example 4: more walks in the quadrant

 [Bostan & Kauers 10]

(E1)



59

Two discrete derivatives:

where A(x) ≈  Q(x,0) and B(y) ≈ Q(0,y).
Uniqueness: A(x), B(y) are the series in t with polynomial coefficients 
solving
                                                                                                     
where X(y) (resp. Y(x)) is the only root of K that is a formal series in t. 
Guess (E2): polynomial equations for A(x) and B(y)

Example 4: more walks in the quadrant

 [Bostan & Kauers 10]

(E1)
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Two discrete derivatives:

where A(x) ≈  Q(x,0) and B(y) ≈ Q(0,y).
Uniqueness: A(x), B(y) are the series in t with polynomial coefficients 
solving
                                                                                                     
where X(y) (resp. Y(x)) is the only root of K that is a formal series in t. 
Guess (E2): polynomial equations for A(x) and B(y)

To do: 
• Prove that the guessed solutions have polynomial coefficients
•  Prove that (E1) holds for the guessed series by polynomial elimination 
and checking first coefficients.

Example 4: more walks in the quadrant

 [Bostan & Kauers 10]

(E1)
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Two discrete derivatives:

where A(x) ≈  Q(x,0) and B(y) ≈ Q(0,y).
Uniqueness: A(x), B(y) are the series in t with polynomial coefficients 
solving
                                                                                                     
where X(y) (resp. Y(x)) is the only root of K that is a formal series in t. 
Guess (E2): differential ideals (in 𝜕t and 𝜕x, resp. 𝜕y) for A(x) and B(y)

To do: 
• Prove that the guessed solutions have polynomial coefficients
•  Prove that (E1) holds for the guessed series by differential elimination 
and checking first coefficients.

Example 4: more walks in the quadrant

 [Bostan, mbm, Kauers & Melczer 16]

(E1)



IV. Simplify



63

Setting
Given a series A(t,x,y…) and a defining functional equation 
(algebraic, D-finite, D-algebraic), get a better understanding of A.

● Find a simple description of A
● Understand the properties of A
● Determine singularities, asymptotics
● ...
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Classical tools: polynomial factorization, resultants, Gröbner bases...

Given a minimal polynomial P(t,A)=0: 
● genus, rational parametrization (if genus 0), Weierstrass form 

for (hyper)elliptic solutions  (algcurves)

Simplifying in the algebraic world
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Classical tools: polynomial factorization, resultants, Gröbner bases...

Given a minimal polynomial P(t,A)=0: 
● genus, rational parametrization (if genus 0), Weierstrass form 

for (hyper)elliptic solutions  (algcurves)
● determination of subfields of ℚ(t,A)       SubFields

Simplifying in the algebraic world
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Classical tools: polynomial factorization, resultants, Gröbner bases...

Given a minimal polynomial P(t,A)=0: 
● genus, rational parametrization (if genus 0), Weierstrass form 

for (hyper)elliptic solutions  (algcurves)
● determination of subfields of ℚ(t,A)       SubFields
● singular expansions and asymptotics…   gfun[algeqtoseries]

Simplifying in the algebraic world
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Classical tools: polynomial factorization, resultants, Gröbner bases...

Given a minimal polynomial P(t,A)=0: 
● genus, rational parametrization (if genus 0), Weierstrass form 

for (hyper)elliptic solutions  (algcurves)
● determination of subfields of ℚ(t,A)       SubFields
● singular expansions and asymptotics…   gfun[algeqtoseries]

Question: Given an algebraic series A(t;x,y…) given by its minimal 
polynomial over K=ℚ(t,x,y…), find a “simple” series generating K(A).
Same question for the subfields between K and K(A).

Simplifying in the algebraic world
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A small example: properly 3-coloured planar maps
How does one go from this polynomial of bidegree (6, 4) in (t,A):

to...
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A small example: properly 3-coloured planar maps
How does one go from this polynomial of bidegree (6, 4) in (t,A):

to...

with
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A small example: properly 3-coloured planar maps
How does one go from this polynomial of bidegree (6, 4) in (t,A):

to...

with
 

              algcurves[parametrization] gives some  parametrization

(genus 0)                                                            [Bernardi & mbm 09]
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How does one go from this polynomial of bidegree (24, 12) in (t,A):

to...

A bigger example: king walks avoiding a quadrant

[mbm & Wallner 23]
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How does one go from this polynomial of bidegree (24, 12) in (t,A):

to...

with

(genus 4)

A bigger example: king walks avoiding a quadrant

[mbm & Wallner 23]
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A recurrent question: dependence on parameters
Subfields. If P(t,A)=0, what are the subfields of ℚ(t,A) ?

Example. Starting from P(t,a) of bidegree (24, 12), the command        
                       evala(Subfields(subs(t=10k, P(t,a)),4)                       
yields a subfield of degree 4 over ℚ(t) for each value of t.
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A recurrent question: dependence on parameters
Subfields. If P(t,A)=0, what are the subfields of ℚ(t,A) ?

Example. Starting from P(t,a) of bidegree (24, 12), the command        
                       evala(Subfields(subs(t=10k, P(t,a)),4)                       
yields a subfield of degree 4 over ℚ(t) for each value of t.

E.g, for t=10,

but the coefficients need not be polynomials in t.
⇒ Reconstruction?
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A recurrent question: dependence on parameters
Subfields. If P(t,A)=0, what are the subfields of ℚ(t,A) ?

Example. Starting from P(t,a) of bidegree (24, 12), the command        
                       evala(Subfields(subs(t=10k, P(t,a)),4)                       
yields a subfield of degree 4 over ℚ(t) for each value of t.

E.g, for t=10,

but the coefficients need not be polynomials in t.
⇒ Reconstruction?
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A recurrent question: dependence on parameters
Parametrization. If P(t,x,A)=0, and P(t,x,a) has genus 0 over ℚ(x), find
a rational parametrization of (t,A) over ℚ(x).
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A recurrent question: dependence on parameters
Parametrization. If P(t,x,A)=0, and P(t,x,a) has genus 0 over ℚ(x), find
a rational parametrization of (t,A) over ℚ(x).

Example. Bicoloured planar maps, counted by edges (t) and 
monochromatic edges (x):

[mbm & Bernardi 09]
(genus 0)  
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A recurrent question: dependence on parameters
Parametrization. If P(t,x,A)=0, and P(t,x,a) has genus 0 over ℚ(x), find
a rational parametrization of (t,A) over ℚ(x).

Example. Bicoloured planar maps, counted by edges (t) and 
monochromatic edges (x):

             parametrization(subs(x=10k,P),t,A,T). For x=10, 

but the coefficients need not be polynomials in x.
⇒ Reconstruction?

[mbm & Bernardi 09]
(genus 0)  
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A recurrent question: dependence on parameters
Parametrization. If P(t,x,A)=0, and P(t,x,a) has genus 0 over ℚ(x), find
a rational parametrization of (t,A) over ℚ(x).

Example. Bicoloured planar maps, counted by edges (t) and 
monochromatic edges (x):

             parametrization(subs(x=10k,P),t,A,T). For x=10, 

but the coefficients need not be polynomials in x.
⇒ Reconstruction?

[mbm & Bernardi 09]
(genus 0)  
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Simplifying in the D-finite world
Classical tools for linear ODEs

● Closure properties [Gfun]
● Factorisation of differential operators 
● ODE of minimal order satisfied by a D-finite series
● Singular expansions
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Simplifying in the D-finite world
Classical tools for linear ODEs

● Closure properties [Gfun]
● Factorisation of differential operators 
● ODE of minimal order satisfied by a D-finite series
● Singular expansions

● Recurrence of minimal order satisfied by its coefficients 
[LRETools]

● Hypergeometric solutions (and sums of hypergeometric) 
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Simplifying in the D-finite world
Classical tools for linear ODEs

● Closure properties [Gfun]
● Factorisation of differential operators 
● ODE of minimal order satisfied by a D-finite series
● Singular expansions

● Recurrence of minimal order satisfied by its coefficients 
[LRETools]

● Hypergeometric solutions (and sums of hypergeometric) 

● Recurrence relations (and ODEs) from explicit numbers (A=B) 
[Petkovsek, Wilf & Zeilberger 96]
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Simplifying in the D-finite world
Classical tools for linear ODEs

● Closure properties [Gfun]
● Factorisation of differential operators 
● ODE of minimal order satisfied by a D-finite series
● Singular expansions

● Recurrence of minimal order satisfied by its coefficients 
[LRETools]

● Hypergeometric solutions (and sums of hypergeometric) 

● Recurrence relations (and ODEs) from explicit numbers (A=B) 

Steve Melczer’stalk

[Petkovsek, Wilf & Zeilberger 96]
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Gessel’s quadrant walks ending on the y-axis
• Start from the polynomial equation for A=Q(0,1):
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Gessel’s quadrant walks ending on the y-axis
• Start from the polynomial equation for A=Q(0,1):

• Convert into a linear DE (gfun[algeqtodiffeq])
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Gessel’s quadrant walks ending on the y-axis
• Start from the polynomial equation for A=Q(0,1):

• Convert into a linear DE (gfun[algeqtodiffeq])

• Then into a recurrence relation (gfun[diffeqtorec])
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Gessel’s quadrant walks ending on the y-axis
• Start from the polynomial equation for A=Q(0,1):

• Convert into a linear DE (gfun[algeqtodiffeq])

• Then into a recurrence relation (gfun[diffeqtorec])

• Then into a smaller one (LRETools[MinimalRecurrence])
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Gessel’s quadrant walks ending on the y-axis
• Start from the polynomial equation for A=Q(0,1):

• Convert into a linear DE (gfun[algeqtodiffeq])

• Then into a recurrence relation (gfun[diffeqtorec])

• Then into a smaller one (LRETools[MinimalRecurrence])

• The solution (LRETools[hypergeomsols])
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Simplifying in the D-finite world

Question: decide whether a given D-finite series is algebraic 
[Bostan 17, Bostan, Caruso & Roques 23(a), Singer 80]
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Classical tools for polynomial ODEs        DifferentialAlgebra
● Closure properties
● Differential elimination
● Rosenfeld-Gröbner algorithm, normal forms
●  ...

Simplifying in the D-algebraic world
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Classical tools for polynomial ODEs        DifferentialAlgebra
● Closure properties
● Differential elimination
● Rosenfeld-Gröbner algorithm, normal forms
●  ...

Simplifying in the D-algebraic world

Question. Smaller order? Smaller degree? Trade degree and order?
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Classical tools for polynomial ODEs        DifferentialAlgebra
● Closure properties
● Differential elimination
● Rosenfeld-Gröbner algorithm, normal forms
●  ...

Simplifying in the D-algebraic world

Question. Decide whether a given D-algebraic series is D-finite?

Question. Smaller order? Smaller degree? Trade degree and order?
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Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?
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Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?

Consider the recursion given by a(2) = 𝛼 and for n>0:
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Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?

Consider the recursion given by a(2) = 𝛼 and for n>0:

or equivalently, the non-linear DE

[Tutte 73-84]
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Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?

Consider the recursion given by a(2) = 𝛼 and for n>0:

or equivalently, the non-linear DE

𝛼 = 1. Loop-free triangulations, algebraic hypergeometric solution

[Tutte 73-84]
[Bettinelli]
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Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?

Consider the recursion given by a(2) = 𝛼 and for n>0:

or equivalently, the non-linear DE

𝛼 = 1. Loop-free triangulations, algebraic hypergeometric solution
𝛼 = 4. Properly 5-coloured triangulations, probably not D-finite

[Tutte 73-84]
[Bettinelli]
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My favourite tool...
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My favourite tool...

Ask people !
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My favourite tool...

Ask people !

The A≠B team...
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My favourite tool...

Ask people !

The A≠B team...
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My favourite tool...

Ask people !

The A≠B team...

Thanks for your 
attention


