Computeralgebra in a

compina edolist s life

- Mireille Bousquet-Mélou
 CNRS, LaBRI, Université de Bordeaux, France

In this talk

Computer algebra in the solution of a counting problem
I. From objects to numbers
II. Guess
III. Prove
IV. Simplify

In this talk

Computer algebra in the solution of a counting problem
I. From objects to numbers
II. Guess
III. Prove
IV. Simplify

Examples
Questions

Three objectives

I. From objects to numbers

Setting

Let A be a set of discrete objects, equipped with an integer size such that the number $a(n)$ of objects of size n is finite for any n.

Setting

Let A be a set of discrete objects, equipped with an integer size such that the number $a(n)$ of objects of size n is finite for any n.

Objective: generate $a(1), a(2), \ldots, a(N)$ for N large.

Case 1: when no recurrence relation is known

Generate numbers (and often objects) by any possible recursive construction

- Generating trees: add a step, an edge, a node...
- Transfer matrices: add a layer

Case 1: when no recurrence relation is known

Self-avoiding walks

[Enting, Guttmann]

Case 1: when no recurrence relation is known

Self-avoiding walks

Question: is there a sub-exponential algorithm that computes the number of self-avoiding walks of length n ?
[Enting, Guttmann]
So far, $n=79$ [Jensen 13(a)]

Case 2: with a recurrence relation

... often encoded as a functional equation for the associated generating function:

$$
A(t) \equiv A:=\sum_{n \geq 0} a(n) t^{n}=\sum_{o \in \mathcal{A}} t^{|o|}
$$

Multivariate enumeration: record additional statistics

$$
A(t ; x, y) \equiv A(x, y):=\sum_{n, i, j \geq 0} a(n ; i, j) t^{n} x^{i} y^{j}
$$

Case 2: with a recurrence relation

... of ten encoded as a functional equation for the associated generating function:

$$
A(t) \equiv A:=\sum_{n \geq 0} a(n) t^{n}=\sum_{o \in \mathcal{A}} t^{|o|}
$$

Multivariate enumeration: record additional statistics

$$
A(t ; x, y) \equiv A(x, y):=\sum_{n, i, j \geq 0} a(n ; i, j) t^{n} x^{i} y^{j}
$$

Functional equations: our pet animals

- Rational

$$
A(t)=\frac{1-t}{1-t-t^{2}}
$$

- Algebraic

$$
1-A(t)+t A(t)^{2}=0
$$

- D-finite

$$
t(1-16 t) A^{\prime \prime}(t)+(1-32 t) A^{\prime}(t)-4 A(t)=0
$$

- D-algebraic

$$
\left(2 t+5 A(t)-3 t A^{\prime}(t)\right) A^{\prime \prime}(t)=48 t
$$

Functional equations: our pet animals

- Rational

$$
A(t)=\frac{1-t}{1-t-t^{2}}
$$

- Algebraic

$$
1-A(t)+t A(t)^{2}=0
$$

- D-finite

$$
t(1-16 t) A^{\prime \prime}(t)+(1-32 t) A^{\prime}(t)-4 A(t)=0
$$

- D-algebraic

$$
\left(2 t+5 A(t)-3 t A^{\prime}(t)\right) A^{\prime \prime}(t)=48 t
$$

Several variables: one DE per variable

Functional equations: our pet animals

- Rational

$$
A(t)=\frac{1-t}{1-t-t^{2}}
$$

- Algebraic

$$
1-A(t)+t A(t)^{2}=0
$$

- D-finite

$$
t(1-16 t) A^{\prime \prime}(t)+(1-32 t) A^{\prime}(t)-4 A(t)=0
$$

- D-algebraic

$$
\left(2 t+5 A(t)-3 t A^{\prime}(t)\right) A^{\prime \prime}(t)=48 t
$$

Several variables: one DE per variable

More exotic animals

Substitutions: set partitions

$$
A(t)=1+\frac{t}{1-t} A\left(\frac{t}{1-t}\right)
$$

q-Equations: Dyck paths by length (t) and area (q)

$$
A(t ; q)=1+t q A(t q ; q) A(t ; q)
$$

More exotic animals

Substitutions: set partitions

$$
A(t)=1+\frac{t}{1-t} A\left(\frac{t}{1-t}\right)
$$

q-Equations: Dyck paths by length (t) and area (q)

$$
A(t ; q)=1+t q A(t q ; q) A(t ; q)
$$

More exotic animals

Substitutions: set partitions

$$
A(t)=1+\frac{t}{1-t} A\left(\frac{t}{1-t}\right)
$$

q-Equations: Dyck paths by length (t) and area (q)

$$
A(t ; q)=1+t q A(t q ; q) A(t ; q)
$$

Discrete derivatives: quadrant walks
$Q(x, y)=1+t(x+y) Q(x, y)+t \frac{Q(x, y)-Q(x, 0)}{y}+t \frac{Q(x, y)-Q(0, y)}{x}$

More exotic animals

Substitutions: set partitions

$$
A(t)=1+\frac{t}{1-t} A\left(\frac{t}{1-t}\right)
$$

q-Equations: Dyck paths by length (t) and area (q)

$$
A(t ; q)=1+t q A(t q ; q) A(t ; q)
$$

Discrete derivatives: quadrant walks

$$
Q(x, y)=1+t(x+y) Q(x, y)+t \frac{Q(x, y)-Q(x, 0)}{y}+t \frac{Q(x, y)-Q(0, y)}{x}
$$

$$
\text { or }\left(1-t\left(x+y+\frac{1}{x}+\frac{1}{y}\right)\right) x y Q(x, y)=x y-t x Q(x, 0)-t y Q(0, y)
$$

Hybrids

Discrete derivatives and q-equations: Tamari intervals on Dyck paths
[mbm, Fusy, Préville-Ratelle II]

$$
A(x, q)=1+\operatorname{tqA}(x, q) \frac{A(x q, q)-A(1, q)}{x q-1}
$$

Hybrids

Discrete derivatives and q-equations: Tamari intervals on Dyck paths [mbm, Fusy, Préville-Ratelle II]

$$
A(x, q)=1+\operatorname{tqA}(x, q) \frac{A(x q, q)-A(1, q)}{x q-1}
$$

Substitutions in "catalytic" variables: bipartite quadrangulations by edges (t) and vertices (x), arbitrary genus
[Louf 21]

$$
2(1+2 D) D A(x)=(A(x+1)+A(x-1)-2 A(x)-2)(1+2 D) A(x)
$$

where $D=t d / d t$ and $A(x)=A(t, x)$.

With a recurrence relation/fixed point equation

- Coefficients in polynomial time
- Newton iteration [Pivoteau, Salvy \& Soria 12]
- Work with the recurrence relation? With the functional equation?
- Work modulo primes?

Produce numbers: why?

- Predict asymptotic behaviour

Example: 1324-avoiding permutations [Conway \& Guttmann 15]

$$
a(n) \sim \kappa \alpha^{n} \beta^{\sqrt{n}} n^{\gamma}
$$

(50 terms known)

$$
\alpha \simeq 11.6 \quad \beta \simeq 0.04 \quad \gamma \simeq-1.1
$$

- Conjecture (simpler) recurrence relations or functional equations

Interlude: Combinatorial exploration

An automatized construction of recurrence relations for some combinatorial classes.
"The Combinatorial Exploration framework produces rigorously verified combinatorial specifications for families of combinatorial objects. These specifications then lead to generating functions, counting sequence, polynomial-time counting algorithms, random sampling procedures, and more."
[Albert, Bean, Claesson, Nadeau, Pantone \& Ulfarsson 22(a)]

Interlude: Combinatorial exploration

An automatized construction of recurrence relations for some combinatorial classes.

Ex. 1234-avoiding permutations
[Albert, Bean, Claesson, Nadeau, Pantone \& Ulfarsson 22(a)]
[PermPAL database]
Permutation Pattern Avoidance Library

$$
\begin{aligned}
F_{0}(x) & =F_{1}(x)+F_{2}(x) \\
F_{1}(x) & =1 \\
F_{2}(x) & =F_{15}(x) F_{3}(x) \\
F_{3}(x) & =F_{4}(x, 1) \\
F_{4}(x, y) & =F_{1}(x)+F_{16}(x, y)+F_{5}(x, y) \\
F_{5}(x, y) & =F_{10}(x, y) F_{6}(x, y) \\
F_{6}(x, y) & =F_{7}(x, 1, y) \\
F_{7}(x, y, z) & =F_{8}(x, y z, z) \\
F_{8}(x, y, z) & =F_{1}(x)+F_{11}(x, y, z)+F_{13}(x, y, z) . \\
F_{9}(x, y, z) & =F_{10}(x, y) F_{8}(x, y, z) \\
F_{10}(x, y) & =y x \\
F_{11}(x, y, z) & =F_{10}(x, z) F_{12}(x, y, z) \\
F_{12}(x, y, z) & =\frac{-z F_{7}(x, 1, z)+y F_{7}\left(x, \frac{y}{z}, z\right)}{-z+y} \\
F_{13}(x, y, z) & =F_{14}(x, y, z) F_{15}(x) \\
F_{14}(x, y, z) & =\frac{z F_{8}(x, y, z)-F_{8}(x, y, 1)}{-1+z} \\
F_{15}(x) & =x \\
F_{16}(x, y) & =F_{15}(x) F_{17}(x, y) \\
F_{17}(x, y) & =\frac{y F_{4}(x, y)-F_{4}(x, 1)}{-1+y}
\end{aligned}
$$

II. Guess

Setting

Let $a(n)$ be the number of objects of size n in the set \mathcal{A}.

Objective: guess a recurrence relation for $a(n)$ from the knowledge of $a(1), a(2), \ldots, a(N)$.

Hermite-Padé approximants for linear relations

Given the first coefficients $a_{i}(0), a_{i}(1), \ldots, a_{i}(n)$ of k series $A_{i}(t), i=1, \ldots, k$, find polynomials $P_{1}(t), \ldots, P_{k}(t)$ of small degree such that

$$
P_{1} A_{1}+\cdots+P_{k} A_{k}=\mathcal{O}\left(t^{n+1}\right)
$$

Hermite-Padé approximants for linear relations

Given the first coefficients $a_{i}(0), a_{i}(1), \ldots, a_{i}(n)$ of k series $A_{i}(t), i=1, \ldots, k$, find polynomials $P_{1}(t), \ldots, P_{k}(t)$ of small degree such that

$$
P_{1} A_{1}+\cdots+P_{k} A_{k}=\mathcal{O}\left(t^{n+1}\right)
$$

\Rightarrow Needs about $n=k d$ coefficients in each series to guess an equation with $\operatorname{deg}\left(\mathrm{P}_{\mathrm{i}}\right)<d$.

Hermite-Padé approximants for linear relations

Given the first coefficients $a_{i}(0), a_{i}(1), \ldots, a_{i}(n)$ of k series $A_{i}(t), i=1, \ldots, k$, find polynomials $P_{1}(t), \ldots, P_{k}(t)$ of small degree such that

$$
P_{1} A_{1}+\cdots+P_{k} A_{k}=\mathcal{O}\left(t^{n+1}\right)
$$

\Rightarrow Needs about $n=k d$ coefficients in each series to guess an equation with $\operatorname{deg}\left(\mathrm{P}_{\mathrm{i}}\right)<d$.

Example: a quadratic q-equation of order 2 corresponds to $k=10$ series $1, \mathcal{A}(\mathrm{t}), \mathcal{A}(\mathrm{tq}), \mathcal{A}\left(\mathrm{tq}^{2}\right)$, $A(t)^{2}, A(\mathrm{tq})^{2}, A\left(\mathrm{tq}^{2}\right)^{2}, A(\mathrm{t}) A(\mathrm{tq}), A(\mathrm{t}) A\left(\mathrm{t}^{2} \mathrm{q}\right), A(\mathrm{tq}) A\left(\mathrm{t}^{2} \mathrm{q}\right)$.

Hermite-Padé approximants for linear relations

Given the first coefficients $a_{i}(0), a_{i}(1), \ldots, a_{i}(n)$ of k series $A_{i}(t), i=l, \ldots, k$, find polynomials $P_{1}(t), \ldots, P_{k}(t)$ of small degree such that

$$
P_{1} A_{1}+\cdots+P_{k} A_{k}=\mathcal{O}\left(t^{n+1}\right)
$$

\Rightarrow Needs about $n=k d$ coefficients in each series to guess an equation with $\operatorname{deg}\left(\mathrm{P}_{\mathrm{i}}\right)<d$.

Example: a quadratic q-equation of order 2 corresponds to $k=10$ series $1, A(t), A(t q), A\left(t q^{2}\right)$,

$$
A(t)^{2}, A(t q)^{2}, A\left(t q^{2}\right)^{2}, A(t) A(t q), A(t) A\left(t^{2} q\right), A(t q) A\left(t^{2} q\right)
$$

A q-equation of order e and degree δ (in A): $k=\binom{\delta+e+1}{\delta}$

Hermite-Padé approximants for linear relations

Given the first coefficients $a_{i}(0), a_{i}(1), \ldots, a_{i}(n)$ of k series $A_{i}(t), i=1, \ldots, k$, find polynomials $P_{1}(t), \ldots, P_{k}(t)$ of small degree such that

$$
P_{1} A_{1}+\cdots+P_{k} A_{k}=\mathcal{O}\left(t^{n+1}\right)
$$

\Rightarrow Needs about $n=k d$ coefficients in each series to guess an equation with $\operatorname{deg}\left(\mathrm{P}_{\mathrm{i}}\right)<d$.

Example: a quadratic q-equation of order 2 corresponds to $k=10$ series $1, A(t), A(t q), A\left(t q^{2}\right)$,

$$
A(t)^{2}, A(t q)^{2}, A\left(t q^{2}\right)^{2}, A(t) A(t q), A(t) A\left(t^{2} q\right), A(t q) A\left(t^{2} q\right)
$$

A q-equation of order e and degree δ (in A): $k=\binom{\delta+e+1}{\delta}$ Same for an ODE of order e and degree δ.

Hermite-Padé approximants for linear relations

Given the first coefficients $a_{i}(0), a_{i}(1), \ldots, a_{i}(n)$ of k series $A_{i}(t), i=1, \ldots, k$, find polynomials $P_{1}(t), \ldots, P_{k}(t)$ of small degree such that

$$
P_{1} A_{1}+\cdots+P_{k} A_{k}=\mathcal{O}\left(t^{n+1}\right)
$$

\Rightarrow Needs about $n=k d$ coefficients in each series to guess an equation with $\operatorname{deg}\left(\mathrm{P}_{\mathrm{i}}\right)<d$.

Example: a quadratic q-equation of order 2 corresponds to $k=10$ series $1, A(t), A(t q), A\left(t q^{2}\right)$,

$$
A(t)^{2}, A(t q)^{2}, A\left(t q^{2}\right)^{2}, A(t) A(t q), A(t) A\left(t^{2} q\right), A(t q) A\left(t^{2} q\right) .
$$

A q-equation of order e and degree δ (in A): $k=\binom{\delta+e+1}{\delta}$ Same for an ODE of order e and degree δ.

Special types of functional equations

- Guess polynomial equations (degree δ): linear relation between

$$
1, A, \ldots, A^{\delta}
$$

$$
\text { gfun[seriestoalgeq] [Salvy } 94 \rightarrow \text {] }
$$

- Guess linear differential equations (order e): linear relation between

$$
1, A, A^{\prime}, \ldots, A^{(e)}
$$

gfun[seriestodiffeq]

- Guess polynomial differential equations (order e, degree δ): requires $\binom{\delta+e+1}{\delta}$ series.

Example 1 : in the 60 's, Tutte and planar maps

Equation with a discrete derivative: planar maps by edges (t) and degree of the root vertex (x) :

$$
A(x)=1+t x^{2} A(x)^{2}+t x \frac{A(x)-A(1)}{x-1}
$$

Example 1: in the $60^{\prime} \mathrm{s}$, Tutte and planar maps

Equation with a discrete derivative: planar maps by edges (t) and degree of the root vertex (x) :

$$
A(x)=1+t x^{2} A(x)^{2}+t x \frac{A(x)-A(1)}{x-1}
$$

Algebraic guess for $A(1)$:

$$
A(1)=\bar{A}_{1}:=\sum_{n \geq 0} \frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} t^{n}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}
$$

Example 1: in the 60's, Tutte and planar maps

Equation with a discrete derivative: planar maps by edges (t) and degree of the root vertex (x):

$$
A(x)=1+t x^{2} A(x)^{2}+t x \frac{A(x)-A(1)}{x-1}
$$

Algebraic guess for $A(1)$:

$$
A(1)=\bar{A}_{1}:=\sum_{n \geq 0} \frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} t^{n}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}
$$

\Rightarrow a guess for $A(x)$ as an algebraic series of degree 4:

$$
\bar{A}(x)=1+t x^{2} \overline{\mathcal{A}}(x)^{2}+t x \frac{\bar{A}(x)-\bar{A}_{1}}{x-1}
$$

Example 2: Gessel's quadrant walks

Equation with two discrete derivatives:
$Q(x, y)=1+t\left(x+x y+\frac{1}{x}+\frac{1}{x y}\right) Q(x, y)$
$-t\left(\frac{1}{x}+\frac{1}{x y}\right) Q(0, y)-\frac{t}{x y}(Q(x, 0)-Q(0,0))$
$+$

Example 2: Gessel's quadrant walks

Equation with two discrete derivatives:

$$
\begin{aligned}
& Q(x, y)=1+t\left(x+x y+\frac{1}{x}+\frac{1}{x y}\right) Q(x, y) \\
& \quad-t\left(\frac{1}{x}+\frac{1}{x y}\right) Q(0, y)-\frac{t}{x y}(Q(x, 0)-Q(0,0))
\end{aligned}
$$

Gessel's ex-conjecture (~2000)

$$
Q(0,0)=\sum_{n \geq 0} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}} t^{2 n}
$$

with $(a)_{n}=a(a+1) \cdots(a+n-1)$.

Example 2: Gessel's quadrant walks

Equation with two discrete derivatives:

$$
\begin{aligned}
& Q(x, y)=1+t\left(x+x y+\frac{1}{x}+\frac{1}{x y}\right) Q(x, y) \\
& \quad-t\left(\frac{1}{x}+\frac{1}{x y}\right) Q(0, y)-\frac{t}{x y}(Q(x, 0)-Q(0,0))
\end{aligned}
$$

Gessel's ex-conjecture (~2000)

Later... $Q(0,0)$ satisfies an polynomial equation $\operatorname{Pol}(t, Q)=0$,
(+ Proof of the algebraicity of $Q(x, y)$)

Example 3: bipartite quadrangulations, any genus

Substitutions in "catalytic" variables:

$$
2(1+2 D) D A(x)=(A(x+1)+A(x-1)-2 A(x)-2)(1+2 D) A(x)
$$

where $D=t d / d t$ (plus value at $x=1$).

Example 3: bipartite quadrangulations, any genus

Substitutions in "catalytic" variables:

$$
2(1+2 D) D A(x)=(A(x+1)+A(x-1)-2 A(x)-2)(1+2 D) A(x)
$$

where $D=t d / d t$ (plus value at $x=1$).

Guess: a quadratic, third order ODE in t

$$
\begin{aligned}
(1+D) A=t(3 t+4 x) A+t & (11 t+8 x) D A+12 t^{2} D^{(2)} A+4 t^{2} D^{(3)} A \\
& +3 t^{2} A^{2}+12 t^{2} A(D A)+12 t^{2}(D A)^{2}+x^{2}
\end{aligned}
$$

Proof [Carrell \& Chapuy 15]

III. Prove

Setting

So far: a functional equation (E_{1}) for $A(t, x, y \ldots)$, possibly wild

Guessed: a simpler equation (E_{2}) for $A(t, x, y \ldots)$

Two ingredients:

- Uniqueness of solution in (E)
- Closure properties of a class containing (E_{2})

Example 1: a big algebraic system

King walks avoiding the negative quadrant
(E_{1}) A system of 4 polynomial equations in 4 series $R_{0}, R_{1}, B_{1}, B_{2}$

Degree in	R_{0}	R_{1}	B_{1}	B_{2}	t	Number of terms
Eq. 1	5	3	1	1	7	72
Eq. 2	6	4	2	2	7	132
Eq. 3	5	5	2	2	9	192
Eq. 4	6	6	3	3	10	276

Example 1: a big algebraic system

King walks avoiding the negative quadrant
(E_{1}) A system of 4 polynomial equations in 4 series $R_{0}, R_{1}, B_{1}, B_{2}$

Degree in	R_{0}	R_{1}	B_{1}	B_{2}	t	Number of terms
Eq. 1	5	3	1	1	7	72
Eq. 2	6	4	2	2	7	132
Eq. 3	5	5	2	2	9	192
Eq. 4	6	6	3	3	10	276

(E2) Guessed minimal polynomials for all four series, and rational expressions in terms of two "simple" series T and U (deg. 12, 24).

Generating function	Degree in $G F$	Degree in t	Number of terms
R_{0}	24	36	323
R_{1}	24	36	623
B_{1}	12	24	229
B_{2}	24	60	477

Example 1: a big algebraic system

King walks avoiding the negative quadrant
(E_{1}) A system of 4 polynomial equations in 4 series $R_{0}, R_{1}, B_{1}, B_{2}$

Degree in	R_{0}	R_{1}	B_{1}	B_{2}	t	Number of terms
Eq. 1	5	3	1	1	7	72
Eq. 2	6	4	2	2	7	132
Eq. 3	5	5	2	2	9	192
Eq. 4	6	6	3	3	10	276

(E2) Guessed minimal polynomials for all four series, and rational expressions in terms of two "simple" series T and U (deg. 12, 24).

Generating function	Degree in $G F$	Degree in t	Number of terms
R_{0}	24	36	323
R_{1}	24	36	623
B_{1}	12	24	229
B_{2}	24	60	477

thanks to Mark van Hoeij!

Example 1: a big algebraic system

King walks avoiding the negative quadrant
(E1) A system of 4 polynomial equations in 4 series $R_{0}, R_{1}, B_{1}, B_{2}$

Degree in	R_{0}	R_{1}	B_{1}	B_{2}	t	Number of terms
Eq. 1	5	3	1	1	7	72
Eq. 2	6	4	2	2	7	132
Eq. 3	5	5	2	2	9	192
Eq. 4	6	6	3	3	10	276

(E2) Guessed minimal polynomials for all four series, and rational expressions in terms of two "simple" series T and U (deg. 12, 24).

Generating function	Degree in $G F$	Degree in t	Number of terms
R_{0}	24	36	323
R_{1}	24	36	623
B_{1}	12	24	229
B_{2}	24	60	477

Plug in $\left(E_{1}\right)$ and check by reduction mod minimal polynomials of T and U.

Example 2: in the 60^{\prime} s, Tutte and planar maps

Planar maps by edges (t) and degree of the root vertex (x) :

$$
A(x)=1+t x^{2} A(x)^{2}+t x \frac{A(x)-A(1)}{x-1}
$$

Uniqueness: there exists a unique solution $A(x)$ that is a formal power series in t. Its coefficients are polynomials in x.

Example 2: in the 60^{\prime} s, Tutte and planar maps

Planar maps by edges (t) and degree of the root vertex (x) :

$$
A(x)=1+t x^{2} A(x)^{2}+t x \frac{A(x)-A(1)}{x-1}
$$

Uniqueness: there exists a unique solution $A(x)$ that is a formal power series in t. Its coefficients are polynomials in x.

Guessing for $A(1)$:
$A(1)=\bar{A}_{1}:=\sum_{n \geq 0} \frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} t^{n}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}$.

Example 2: in the 60^{\prime} s, Tutte and planar maps

Planar maps by edges (t) and degree of the root vertex (x):

$$
A(x)=1+t x^{2} \mathcal{A}(x)^{2}+t x \frac{A(x)-A(1)}{x-1} .
$$

Uniqueness: there exists a unique solution $A(x)$ that is a formal power series in t. Its coefficients are polynomials in x.

Guessing for $A(1)$:
$A(1)=\bar{A}_{1}:=\sum_{n \geq 0} \frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} \mathrm{t}^{n}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}$.
\Rightarrow a guess for $A(x)$ as an algebraic series of degree 4:

$$
\bar{A}(x)=1+t x^{2} \bar{A}(x)^{2}+t x \frac{\overline{\mathcal{A}}(x)-\bar{A}_{1}}{x-1}
$$

Example 2: in the 60's, Tutte and planar maps

Planar maps by edges (t) and degree of the root vertex (x):

$$
A(x)=1+t x^{2} \mathcal{A}(x)^{2}+t x \frac{A(x)-A(1)}{x-1} .
$$

Uniqueness: there exists a unique solution $A(x)$ that is a formal power series in t. Its coefficients are polynomials in x.

Guessing for $A(1)$:
$A(1)=\bar{A}_{1}:=\sum_{n \geq 0} \frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} \mathrm{t}^{n}=\frac{(1-12 \mathrm{t})^{3 / 2}-1+18 \mathrm{t}}{54 \mathrm{t}^{2}}$.
\Rightarrow a guess for $A(x)$ as an algebraic series of degree 4:

$$
\bar{A}(x)=1+t x^{2} \bar{A}(x)^{2}+t x \frac{\overline{\mathcal{A}}(x)-\bar{A}_{1}}{x-1}
$$

To do: prove that $\overline{\mathcal{A}}(x)$ has polynomial coeffs. in x, so that $\bar{A}_{1}=\bar{A}(1)$.

Example 2: in the 60's, Tutte and planar maps

Planar maps by edges (t) and degree of the root vertex (x):

$$
A(x)=1+t x^{2} A(x)^{2}+t x \frac{A(x)-A(1)}{x-1}
$$

Uniqueness: there exists a unique solution $A(x)$ that is a formal power series in t. Its coefficients are polynomials in x.

Guessing for $A(1)$:
$A(1)=\bar{A}_{1}:=\sum_{n \geq 0} \frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} t^{n}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}$.
\Rightarrow a guess for $A(x)$ as an algebraic series of degree 4:

$$
\bar{A}(x)=1+t x^{2} \overline{\mathcal{A}}(x)^{2}+t x \frac{\bar{A}(x)-\bar{A}_{1}}{x-1}
$$

or

$$
(x-1)\left(\bar{A}(x)-1-t x^{2} \bar{A}(x)^{2}\right)=t x\left(\bar{A}(x)-\bar{A}_{1}\right) .
$$

To do: prove that $\bar{A}(x)$ has polynomial coeffs. in x, so that $\bar{A}_{1}=\bar{A}(1)$.

Example 3: Kreweras' walks in the quadrant

Two discrete derivatives:

$$
\left(x y-t\left(x+y+x^{2} y^{2}\right)\right) Q(x, y)=x y-A(x)-A(y)
$$

where $A(x)=t x Q(x, 0)$.

Example 3: Kreweras' walks in the quadrant

Two discrete derivatives:

$$
\left(x y-t\left(x+y+x^{2} y^{2}\right)\right) Q(x, y)=x y-A(x)-A(y)
$$

where $A(x)=t x Q(x, 0)$.
Uniqueness: $A(x)$ is the only series in + with polynomial coefficients
in \times solving

$$
\begin{equation*}
0=x Y(x)-A(x)-A(Y(x)), \tag{1}
\end{equation*}
$$

where $Y(x)$ is the only root of the kernel that is a formal series in t.

Example 3: Kreweras' walks in the quadrant

Two discrete derivatives:

$$
\left(x y-t\left(x+y+x^{2} y^{2}\right)\right) Q(x, y)=x y-A(x)-A(y)
$$

where $A(x)=t x Q(x, 0)$.
Uniqueness: $A(x)$ is the only series in + with polynomial coefficients
in \times solving

$$
\begin{equation*}
0=x Y(x)-A(x)-A(Y(x)), \tag{1}
\end{equation*}
$$

where $Y(x)$ is the only root of the kernel that is a formal series in t.
Guess: a polynomial equation (E_{2}) of degree 6 defining a series $\bar{A}(x)$.

Example 3: Kreweras' walks in the quadrant

Two discrete derivatives:

$$
\left(x y-t\left(x+y+x^{2} y^{2}\right)\right) Q(x, y)=x y-A(x)-A(y)
$$

where $A(x)=t x Q(x, 0)$.
Uniqueness: $A(x)$ is the only series in t with polynomial coefficients
in x solving

$$
\begin{equation*}
0=x Y(x)-A(x)-A(Y(x)), \tag{1}
\end{equation*}
$$

where $Y(x)$ is the only root of the kernel that is a formal series in t.

Guess: a polynomial equation (E2) of degree 6 defining a series $\bar{A}(x)$.

To do:

- Prove that $\bar{A}(x)$ has polynomial coefficients in x.
- Prove that $\left(E_{1}\right)$ holds for $\bar{A}(x)$ by computing a polynomial annihilating the rhs of (E_{1}), and checking first coefficients.

Example 4: more walks in the quadrant

Two discrete derivatives:

$$
K(x, y) Q(x, y)=x y-A(x)-B(y)
$$

where $A(x) \approx Q(x, 0)$ and $B(y) \approx Q(0, y)$.

Example 4: more walks in the quadrant

Two discrete derivatives:

$$
K(x, y) Q(x, y)=x y-A(x)-B(y)
$$

where $A(x) \approx Q(x, 0)$ and $B(y) \approx Q(0, y)$.
Uniqueness: $A(x), B(y)$ are the series in t with polynomial coefficients solving

$$
\begin{align*}
& 0=X(y) y-A(X(y))-B(y), \tag{1}\\
& 0=x Y(x)-A(x)-B(Y(x)),
\end{align*}
$$

where $X(y)(r e s p . ~ Y(x))$ is the only root of K that is a formal series in t.

Example 4: more walks in the quadrant

Two discrete derivatives:

$$
K(x, y) Q(x, y)=x y-A(x)-B(y)
$$

where $A(x) \approx Q(x, 0)$ and $B(y) \approx Q(0, y)$.
Uniqueness: $A(x), B(y)$ are the series in t with polynomial coefficients solving

$$
\begin{align*}
& 0=X(y) y-A(X(y))-B(y), \tag{E}\\
& 0=x Y(x)-A(x)-B(Y(x)),
\end{align*}
$$

where $X(y)$ (resp. $Y(x))$ is the only root of K that is a formal series in t.
Guess (E_{2}): polynomial equations for $A(x)$ and $B(y)$

Example 4: more walks in the quadrant

Two discrete derivatives:

$$
K(x, y) Q(x, y)=x y-A(x)-B(y)
$$

where $A(x) \approx Q(x, 0)$ and $B(y) \approx Q(0, y)$.
Uniqueness: $A(x), B(y)$ are the series in t with polynomial coefficients solving

$$
\begin{align*}
& 0=X(y) y-A(X(y))-B(y), \tag{1}\\
& 0=x Y(x)-A(x)-B(Y(x)),
\end{align*}
$$

where $X(y)$ (resp. $Y(x))$ is the only root of K that is a formal series in t.
Guess (E_{2}): polynomial equations for $A(x)$ and $B(y)$
To do:

- Prove that the guessed solutions have polynomial coefficients
- Prove that (E_{1}) holds for the guessed series by polynomial elimination and checking first coefficients.
[Bostan \& Kauers 10]

Example 4: more walks in the quadrant

Two discrete derivatives:

$$
K(x, y) Q(x, y)=x y-A(x)-B(y)
$$

where $A(x) \approx Q(x, 0)$ and $B(y) \approx Q(0, y)$.
Uniqueness: $A(x), B(y)$ are the series in t with polynomial coefficients solving

$$
\begin{align*}
& 0=X(y) y-A(X(y))-B(y), \tag{1}\\
& 0=x Y(x)-A(x)-B(Y(x)),
\end{align*}
$$

where $X(y)$ (resp. $Y(x))$ is the only root of K that is a formal series in t.
Guess (E_{2}): differential ideals (in ∂t and ∂x, resp. ∂y) for $A(x)$ and $B(y)$
To do:

- Prove that the guessed solutions have polynomial coefficients
- Prove that (E_{1}) holds for the guessed series by differential elimination and checking first coefficients.
[Bostan, mbm, Kauers \& Melczer 16]
IV. Simplify

Setting

Given a series $A(t, x, y \ldots)$ and a defining functional equation (algebraic, D-finite, D-algebraic), get a better understanding of A.

- Find a simple description of A
- Understand the properties of A
- Determine singularities, asymptotics
- ...

Simplifying in the algebraic world

Classical tools: polynomial factorization, resultants, Gröbner bases...
Given a minimal polynomial $P(t, A)=0$:

- genus, rational parametrization (if genus 0), Weierstrass form for (hyper)elliptic solutions (algcurves)

Simplifying in the algebraic world

Classical tools: polynomial factorization, resultants, Gröbner bases...
Given a minimal polynomial $P(t, A)=0$:

- genus, rational parametrization (if genus 0), Weierstrass form for (hyper)elliptic solutions (algcurves)
- determination of subfields of $\mathbb{Q}(t, A)$ SubFields

Simplifying in the algebraic world

Classical tools: polynomial factorization, resultants, Gröbner bases...
Given a minimal polynomial $P(t, A)=0$:

- genus, rational parametrization (if genus 0), Weierstrass form for (hyper)elliptic solutions (algcurves)
- determination of subfields of $\mathbb{Q}(t, A)$ SubFields
- singular expansions and asymptotics... gfun[algeqtoseries]

Simplifying in the algebraic world

Classical tools: polynomial factorization, resultants, Gröbner bases...
Given a minimal polynomial $P(t, A)=0$:

- genus, rational parametrization (if genus 0), Weierstrass form for (hyper)elliptic solutions (algcurves)
- determination of subfields of $\mathbb{Q}(t, A)$ SubFields
- singular expansions and asymptotics... gfun[algeqtoseries]

Question: Given an algebraic series $A\left(t_{;} x, y \ldots\right)$ given by its minimal polynomial over $K=\mathbb{Q}(t, x, y \ldots)$, find a "simple" series generating $K(A)$. Same question for the subfields between K and $K(A)$.

A small example: properly 3-coloured planar maps

How does one go from this polynomial of bidegree $(6,4)$ in (t, A) :
$-12500 A^{4} t^{6}+24 t^{4}(1000 t-71) A^{3}-2 t^{2}\left(3600 t^{3}+7216 t^{2}-1020 t+39\right) A^{2}$
$-\left(864 t^{5}-9040 t^{4}-1712 t^{3}+536 t^{2}-42 t+1\right) A-40 t+540 t^{2}-2720 t^{3}+432 t^{4}+1=0$ to...

A small example: properly 3-coloured planar maps

How does one go from this polynomial of bidegree $(6,4)$ in (t, A) :
$-12500 A^{4} t^{6}+24 t^{4}(1000 t-71) A^{3}-2 t^{2}\left(3600 t^{3}+7216 t^{2}-1020 t+39\right) A^{2}$
$-\left(864 t^{5}-9040 t^{4}-1712 t^{3}+536 t^{2}-42 t+1\right) A-40 t+540 t^{2}-2720 t^{3}+432 t^{4}+1=0$ to...

$$
A=2 T-\frac{T^{2}(1+2 T)\left(1+2 T^{2}+2 T^{4}\right)}{\left(1-2 T^{3}\right)^{3}}
$$

with $T=t \frac{(1+2 T)^{3}}{1-2 \mathrm{~T}^{3}}$?

A small example: properly 3-coloured planar maps

How does one go from this polynomial of bidegree $(6,4)$ in (t, A) :
$-12500 A^{4} t^{6}+24 t^{4}(1000 t-71) A^{3}-2 t^{2}\left(3600 t^{3}+7216 t^{2}-1020 t+39\right) A^{2}$
$-\left(864 t^{5}-9040 t^{4}-1712 t^{3}+536 t^{2}-42 t+1\right) A-40 t+540 t^{2}-2720 t^{3}+432 t^{4}+1=0$ to...

$$
A=2 T-\frac{T^{2}(1+2 T)\left(1+2 T^{2}+2 T^{4}\right)}{\left(1-2 T^{3}\right)^{3}}
$$

with $T=t \frac{(1+2 \mathrm{~T})^{3}}{1-2 \mathrm{~T}^{3}}$?

algcurves[parametrization] gives some parametrization

$$
t=\frac{S^{3}-6 S^{2}+12 S-10}{S^{3}(S-2)}
$$

A bigger example: king walks avoiding a quadrant

How does one go from this polynomial of bidegree $(24,12)$ in (t, A) :
$\left(1544682349732742644432896 t^{6}+2859956429703196777316352 t^{5}+1371747210064046280769536 t^{4}\right.$
$\left.+261868606648367056551936 t^{3}+206859122755182935064576 t^{2}+986133970108455174144 t+655923393268641792\right) A^{12}$
$+\left(11908838181437910288433152 t^{8}+27491842869484512619266048 t^{7}+22066168998404344966742016 t^{6}\right.$
$+9456378844969952000409600 t^{5}+3577317106243476992311296 t^{4}+725362067373633286668288 t^{3}$
$\left.+123324842335532119326720 t^{2}+426162798940826124288 t+249875578388054016\right) A^{11}$

$$
+[\cdots]
$$

$-2\left(1099511627776 t^{16}+4947802324992 t^{15}+8908835913728 t^{14}+8010919313408 t^{13}+3551066587136 t^{12}\right.$
$+601824952320 t^{11}+128619544576 t^{10}+260050427904 t^{9}+187250317568 t^{8}+66799107968 t^{7}+13529493584 t^{6}$

$$
\begin{array}{r}
\left.+1545216528 t^{5}+86381746 t^{4}+1570596 t^{3}+920 t^{2}+38 t-1\right)(4 t+1)^{4}(8 t-1)^{4} A \\
+3 t^{2}(t+1)^{2}(4 t+1)^{6}(8 t-1)^{10}=0
\end{array}
$$

A bigger example: king walks avoiding a quadrant

How does one go from this polynomial of bidegree $(24,12)$ in (t, A) :
$\left(1544682349732742644432896 t^{6}+2859956429703196777316352 t^{5}+1371747210064046280769536 t^{4}\right.$
$\left.+261868606648367056551936 t^{3}+206859122755182935064576 t^{2}+986133970108455174144 t+655923393268641792\right) A^{12}$
$+\left(11908838181437910288433152 t^{8}+27491842869484512619266048 t^{7}+22066168998404344966742016 t^{6}\right.$
$+9456378844969952000409600 t^{5}+3577317106243476992311296 t^{4}+725362067373633286668288 t^{3}$
$\left.+123324842335532119326720 t^{2}+426162798940826124288 t+249875578388054016\right) A^{11}$
$+[\cdots]$
$-2\left(1099511627776 t^{16}+4947802324992 t^{15}+8908835913728 t^{14}+8010919313408 t^{13}+3551066587136 t^{12}\right.$
$+601824952320 t^{11}+128619544576 t^{10}+260050427904 t^{9}+187250317568 t^{8}+66799107968 t^{7}+13529493584 t^{6}$

$$
\begin{aligned}
+1545216528 t^{5}+86381746 t^{4}+1570596 t^{3}+920 t^{2} & +38 t-1)(4 t+1)^{4}(8 t-1)^{4} A \\
& +3 t^{2}(t+1)^{2}(4 t+1)^{6}(8 t-1)^{10}=0
\end{aligned}
$$

to...

$$
A=3(1-8 t) \frac{T^{2}\left(1+4 T+T^{2}\right)\left(T^{2}-1\right)(1+2 T)}{2\left(1-3 T^{2}-4 T^{3}\right)^{3}\left(1+4 T-2 T^{3}\right)}
$$

with

$$
\frac{T\left(T^{2}+T+1\right)\left(1+3 T-T^{3}\right)^{3}}{\left(T^{2}+4 T+1\right)\left(1-3 T^{2}-4 T^{3}\right)^{3}}=\frac{t(1+t)}{1-8 t}
$$

A recurrent question: dependence on parameters

Subfields. If $P(t, A)=0$, what are the subfields of $\mathbb{Q}(t, A)$?
Example. Starting from $P(t, a)$ of bidegree $(24,12)$, the command evala(Subfields(subs($\left.\left.t=10^{k}, P(t, a)\right), 4\right)$
yields a subfield of degree 4 over $\mathbb{Q}(t)$ for each value of t.

A recurrent question: dependence on parameters

Subfields. If $P(t, A)=0$, what are the subfields of $\mathbb{Q}(t, A)$?
Example. Starting from $P(t, a)$ of bidegree $(24,12)$, the command
evala(Subfields(subs(t=10k, P(t,a)),4)
yields a subfield of degree 4 over $\mathbb{Q}(t)$ for each value of t.
E.9, for $t=10$,

$$
\operatorname{RootOf}\left(59059089842541 _Z^{4}+40291825844958 _Z^{3}-14363433497042654706 Z^{2}\right.
$$

$$
\left.+3848807433734406268482 _Z-290439563039835597485204\right)
$$

but the coefficients need not be polynomials in t.
\Rightarrow Reconstruction?

A recurrent question: dependence on parameters

Subfields. If $P(t, A)=0$, what are the subfields of $\mathbb{Q}(t, A)$?
Example. Starting from $P(t, a)$ of bidegree $(24,12)$, the command
evala(Subfields(subs(t=10k, P(t,a)),4)
yields a subfield of degree 4 over $\mathbb{Q}(t)$ for each value of t.
E.9, for $t=10$,

RootOf $\left(59059089842541 _Z^{4}+40291825844958 _Z^{3}-14363433497042654706 _Z^{2}\right.$
+3848807433734406268482_Z-290439563039835597485204)
but the coefficients need not be polynomials in t.
\Rightarrow Reconstruction?

$$
\frac{Z}{(1+Z)(1-3 Z)^{3}}=\frac{t(1+t)}{1-8 t}
$$

A recurrent question: dependence on parameters

Parametrization. If $P(t, x, A)=0$, and $P(t, x, a)$ has genus 0 over $\mathbb{Q}(x)$, find a rational parametrization of (t, A) over $\mathbb{Q}(x)$.

A recurrent question: dependence on parameters

Parametrization. If $P(t, x, A)=0$, and $P(t, x, a)$ has genus 0 over $\mathbb{Q}(x)$, find a rational parametrization of (t, A) over $\mathbb{Q}(x)$.

Example. Bicoloured planar maps, counted by edges (t) and monochromatic edges (x):
$314928 x^{7} t^{9}(x+1)^{6} A^{6}-34992 t^{7} x^{5}(x+1)^{4}\left(36 t x^{3}+54 t x^{2}-x^{2}+18 t x-1\right) A^{5}+[$.

A recurrent question: dependence on parameters

Parametrization. If $P(t, x, A)=0$, and $P(t, x, a)$ has genus 0 over $\mathbb{Q}(x)$, find a rational parametrization of (t, A) over $\mathbb{Q}(x)$.

Example. Bicoloured planar maps, counted by edges (t) and monochromatic edges (x):

$$
314928 x^{7} t^{9}(x+1)^{6} A^{6}-34992 t^{7} x^{5}(x+1)^{4}\left(36 t x^{3}+54 t x^{2}-x^{2}+18 t x-1\right) A^{5}+[\cdot .
$$

parametrization (subs $\left.\left(x=10^{k}, P\right), t, A, T\right)$. For $x=10$,
$\frac{\mathrm{t}}{1782(22 \mathrm{~T}-41229)}=\frac{234256 \mathrm{~T}^{4}-1793975040 \mathrm{~T}^{3}+5149664707176 \mathrm{~T}^{2}-6542185481249616 \mathrm{~T}+30915272838627112}{\left(10648 \mathrm{~T}^{3}-33989868 \mathrm{~T}^{2}+13112460306 \mathrm{~T}+24152458116951\right)^{2}}$
but the coefficients need not be polynomials in x.
\Rightarrow Reconstruction?
(genus 0)

A recurrent question: dependence on parameters

Parametrization. If $P(t, x, A)=0$, and $P(t, x, a)$ has genus 0 over $\mathbb{Q}(x)$, find a rational parametrization of (t, A) over $\mathbb{Q}(x)$.

Example. Bicoloured planar maps, counted by edges (t) and monochromatic edges (x):

$$
314928 x^{7} t^{9}(x+1)^{6} A^{6}-34992 t^{7} x^{5}(x+1)^{4}\left(36 t x^{3}+54 t x^{2}-x^{2}+18 t x-1\right) A^{5}+[\cdot
$$

parametrization (subs $\left.\left(x=10^{k}, P\right), t, A, T\right)$. For $x=10$,
$\frac{\mathrm{t}}{1782(22 \mathrm{~T}-41229)}=\frac{234256 \mathrm{~T}^{4}-1793975040 \mathrm{~T}^{3}+5149664707176 \mathrm{~T}^{2}-6542185481249616 \mathrm{~T}+30915272838627112}{\left(10648 \mathrm{~T}^{3}-33989868 \mathrm{~T}^{2}+13112460306 \mathrm{~T}+24152458116951\right)^{2}}$
but the coefficients need not be polynomials in x.
\Rightarrow Reconstruction?
(genus 0)

$$
T=t \frac{\left(1+3 x T-3 x T^{2}-x^{2} T^{3}\right)^{2}}{1-2 T+2 x^{2} \mathrm{~T}^{3}-x^{2} \mathrm{~T}^{4}}
$$

Simplifying in the D-finite world

Classical tools for linear ODEs

- Closure properties [Gfun]
- Factorisation of differential operators
- ODE of minimal order satisfied by a D-finite series
- Singular expansions

Simplifying in the D-finite world

Classical tools for linear ODEs

- Closure properties [Gfun]
- Factorisation of differential operators
- ODE of minimal order satisfied by a D-finite series
- Singular expansions
- Recurrence of minimal order satisfied by its coefficients [LRETools]
- Hypergeometric solutions (and sums of hypergeometric)

Simplifying in the D-finite world

Classical tools for linear ODEs

- Closure properties [Gfun]
- Factorisation of differential operators
- ODE of minimal order satisfied by a D-finite series
- Singular expansions
- Recurrence of minimal order satisfied by its coefficients [LRETools]
- Hypergeometric solutions (and sums of hypergeometric)
- Recurrence relations (and ODEs) from explicit numbers ($A=B$)
[Petkovsek, Wilf \& Zeilberger 96]

Simplifying in the D-finite world

Classical tools for linear ODEs

- Closure properties [Gfun]
- Factorisation of differential operators
- ODE of minimal order satisfied by a D-finite series
- Singulc.

ins
Steve Melczer's
talk
y its coefficients
- Recurren [LRETools」
- Hypergeometric solutions (and sums of hypergeometric)
- Recurrence relations (and ODEs) from explicit numbers ($A=B$)
[Petkovsek, Wilf \& Zeilberger 96]

Gessel's quadrant walks ending on the y-axis

- Start from the polynomial equation for $A=Q(0,1)$: $109049173118505959030784 A^{8} t^{6}+12116574790945106558976 t^{4}(16 t+1) A^{6}$ $+448762029294263205888 \mathrm{t}^{2}\left(256 \mathrm{t}^{2}-58 \mathrm{t}+1\right) \mathrm{A}^{4}$
$+5540271966595842048(16 t+1)\left(256 t^{2}-22 t+1\right) A^{2}-5540271966595842048=0$

Gessel's quadrant walks ending on the y-axis

- Start from the polynomial equation for $A=Q(0,1)$: $109049173118505959030784 A^{8} t^{6}+12116574790945106558976 t^{4}(16 t+1) A^{6}$ $+448762029294263205888 \mathrm{t}^{2}\left(256 \mathrm{t}^{2}-58 \mathrm{t}+1\right) \mathrm{A}^{4}$
$+5540271966595842048(16 t+1)\left(256 t^{2}-22 t+1\right) A^{2}-5540271966595842048=0$
- Convert into a linear DE (gfun[algeqtodiffeq])

$$
24\left(1120 t^{2}-142 t+5\right) A(t)+[\cdots]+9 t^{3}(16 t-1)^{3}\left(\frac{d^{4}}{d t^{4}} A(t)\right)=0
$$

Gessel's quadrant walks ending on the y-axis

- Start from the polynomial equation for $A=Q(0,1)$: $109049173118505959030784 A^{8} t^{6}+12116574790945106558976 t^{4}(16 t+1) A^{6}$ $+448762029294263205888 \mathrm{t}^{2}\left(256 \mathrm{t}^{2}-58 \mathrm{t}+1\right) \mathrm{A}^{4}$ $+5540271966595842048(16 t+1)\left(256 t^{2}-22 t+1\right) A^{2}-5540271966595842048=0$
- Convert into a linear DE (gfun[algeqtodiffeq])

$$
24\left(1120 t^{2}-142 t+5\right) A(t)+[\cdots]+9 t^{3}(16 t-1)^{3}\left(\frac{d^{4}}{d t^{4}} A(t)\right)=0
$$

- Then into a recurrence relation (gfun[diffeqtorec])

$$
\begin{aligned}
& 256(6 n+5)(2 n+3)(2 n+1)(6 n+7) a(n) \\
& \quad+[\cdots]-(3 n+10)(n+4)(n+3)(3 n+11) a(n+3)=0
\end{aligned}
$$

Gessel's quadrant walks ending on the y-axis

- Start from the polynomial equation for $A=Q(0,1)$: $109049173118505959030784 A^{8} t^{6}+12116574790945106558976 t^{4}(16 t+1) A^{6}$ $+448762029294263205888 \mathrm{t}^{2}\left(256 \mathrm{t}^{2}-58 \mathrm{t}+1\right) \mathrm{A}^{4}$ $+5540271966595842048(16 t+1)\left(256 t^{2}-22 t+1\right) A^{2}-5540271966595842048=0$
- Convert into a linear DE (gfun[algeqtodiffeq])

$$
24\left(1120 t^{2}-142 t+5\right) A(t)+[\cdots]+9 t^{3}(16 t-1)^{3}\left(\frac{d^{4}}{d t^{4}} A(t)\right)=0
$$

- Then into a recurrence relation (gfun[diffeqtorec])

$$
\begin{aligned}
& 256(6 n+5)(2 n+3)(2 n+1)(6 n+7) a(n) \\
& \quad+[\cdots]-(3 n+10)(n+4)(n+3)(3 n+11) a(n+3)=0
\end{aligned}
$$

- Then into a smaller one (LRETools[MinimalRecurrence])

$$
\begin{aligned}
& 16(6 n+5)(2 n+3)(2 n+1)(6 n+7)(4 n+9) a(n) \\
& +[\cdots]+(4 n+5)(3 n+7)(n+3)(n+2)(3 n+8) a(n+2)=0
\end{aligned}
$$

Gessel's quadrant walks ending on the y-axis

- Start from the polynomial equation for $A=Q(0,1)$: $109049173118505959030784 A^{8} t^{6}+12116574790945106558976 t^{4}(16 t+1) A^{6}$

$$
+448762029294263205888 t^{2}\left(256 t^{2}-58 t+1\right) A^{4}
$$

$+5540271966595842048(16 t+1)\left(256 t^{2}-22 t+1\right) A^{2}-5540271966595842048=0$

- Convert into a linear DE (gfun[algeqtodiffeq])

$$
24\left(1120 t^{2}-142 t+5\right) A(t)+[\cdots]+9 t^{3}(16 t-1)^{3}\left(\frac{d^{4}}{d t^{4}} A(t)\right)=0
$$

- Then into a recurrence relation (gfun[diffeqtorec])

$$
\begin{aligned}
& 256(6 n+5)(2 n+3)(2 n+1)(6 n+7) a(n) \\
& \quad+[\cdots]-(3 n+10)(n+4)(n+3)(3 n+11) a(n+3)=0
\end{aligned}
$$

- Then into a smaller one (LRETools[MinimalRecurrence])

$$
\begin{aligned}
16(6 n+5) & (2 n+3)(2 n+1)(6 n+7)(4 n+9) a(n) \\
& +[\cdots]+(4 n+5)(3 n+7)(n+3)(n+2)(3 n+8) a(n+2)=0
\end{aligned}
$$

- The solution (LRETools[hypergeomsols])
$a(n)=\frac{4 \sqrt{3} \Gamma\left(\frac{5}{6}\right) 16^{n} \Gamma\left(n+\frac{1}{2}\right) \Gamma\left(n+\frac{7}{6}\right)}{9 \sqrt{\pi} \Gamma\left(\frac{2}{3}\right) \Gamma(n+2) \Gamma\left(n+\frac{4}{3}\right)}+\frac{2 \Gamma\left(\frac{2}{3}\right) 16^{n} \Gamma\left(n+\frac{5}{6}\right) \Gamma\left(n+\frac{1}{2}\right)}{9 \sqrt{\pi} \Gamma\left(\frac{5}{6}\right) \Gamma(n+2) \Gamma\left(n+\frac{5}{3}\right)}$

Simplifying in the D-finite world

Question: decide whether a given D-finite series is algebraic [Bostan 17, Bostan, Caruso \& Roques 23(a), Singer 80]

Simplifying in the D-algebraic world

Classical tools for polynomial ODEs
DifferentialAlgebra

- Closure properties
- Differential elimination
- Rosenfeld-Gröbner algorithm, normal forms

Simplifying in the D-algebraic world

Classical tools for polynomial ODEs
DifferentialAlgebra

- Closure properties
- Differential elimination
- Rosenfeld-Gröbner algorithm, normal forms

Question. Smaller order? Smaller degree? Trade degree and order?

Simplifying in the D-algebraic world

Classical tools for polynomial ODEs
DifferentialAlgebra

- Closure properties
- Differential elimination
- Rosenfeld-Gröbner algorithm, normal forms
- ...

Question. Smaller order? Smaller degree? Trade degree and order?

Question. Decide whether a given D-algebraic series is D-finite?

Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?

Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?
Consider the recursion given by $a(2)=\alpha$ and for $n>0$:

$$
(n+1)(n+2) a(n+2)=(3 n-1)(3 n-2) a(n+1)
$$

$$
+2 \sum_{i=1}^{n} i(i+1)(3 n-3 i+1) a(i+1) a(n+2-i)
$$

Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?
Consider the recursion given by $a(2)=\alpha$ and for $n>0$:

$$
(n+1)(n+2) a(n+2)=(3 n-1)(3 n-2) a(n+1)
$$

$$
+2 \sum_{i=1}^{n} i(i+1)(3 n-3 i+1) a(i+1) a(n+2-i)
$$

or equivalently, the non-linear $D E$

$$
\left(t-9 t^{2}+10 A-6 t A^{\prime}\right) A^{\prime \prime}+18 t A^{\prime}-20 A=2 \alpha t
$$

Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?
Consider the recursion given by $a(2)=\alpha$ and for $n>0$:

$$
(n+1)(n+2) a(n+2)=(3 n-1)(3 n-2) a(n+1)
$$

$$
+2 \sum_{i=1}^{n} i(i+1)(3 n-3 i+1) a(i+1) a(n+2-i)
$$

or equivalently, the non-linear $D E$

$$
\left(t-9 t^{2}+10 A-6 t A^{\prime}\right) A^{\prime \prime}+18 t A^{\prime}-20 A=2 \alpha t .
$$

$\alpha=1$. Loop-free triangulations, algebraic hypergeometric solution

Example: coloured triangulations

Question. Decide whether a given D-algebraic series is D-finite?
Consider the recursion given by $a(2)=\alpha$ and for $n>0$:

$$
(n+1)(n+2) a(n+2)=(3 n-1)(3 n-2) a(n+1)
$$

$$
+2 \sum_{i=1}^{n} i(i+1)(3 n-3 i+1) a(i+1) a(n+2-i)
$$

or equivalently, the non-linear $D E$

$$
\left(t-9 t^{2}+10 A-6 t A^{\prime}\right) A^{\prime \prime}+18 t A^{\prime}-20 A=2 \alpha t .
$$

$\alpha=1$. Loop-free triangulations, algebraic hypergeometric solution $\alpha=4$. Properly 5-coloured triangulations, probably not D-finite

Ask people!

Ask people!

The $A \neq B$ team...

Ask people!

The $A \neq B$ team...

Ask people!

The $A \neq B$ team...

Thanks for your attention

