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Goal, motivation, examples
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Algebraic and transcendental power series

▷ Definition: A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f (t)) = 0, where P ∈ Q[x, y] \ {0}.

Otherwise, f is called transcendental.

▷ Examples:

polynomials in Q[t]
rational functions R in Q(t) with no pole at t = 0

all powers Rα for α ∈ Q and R(0) = 1

sums and products of algebraic power series are algebraic

the GF ∑n≥0 Cntn of Dyck walks in N2

Cn = 1
n+1 (

2n
n )

▷ Def extends to Laurent series f ∈ Q((t)) and Puiseux series f ∈ Q((t1/⋆))
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sums and products of algebraic power series are algebraic

the GF ∑n≥0 Cntn of Dyck walks in N2

Cn = 1
n+1 (

2n
n )

Goal: Given f ∈ Q[[t]], either in explicit form (by a formula), or in implicit
form (by a functional equation), determine its algebraicity or transcendence.
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Examples (I): power series given explicitly, in closed form
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▷ Which ones are algebraic?
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Examples (II): power series given implicitly, as solutions of equations

f (t) = 1 + 3t + 18t2 + 105t3 + · · · , the unique solution of

t2 (1 + t) (1− 2t) (1 + 4t) (1− 8t) f ′′′(t) + t
(

576t4 + 200t3 − 252t2 − 33t + 5
)

f ′′(t)

+4
(

288t4 + 22t3 − 117t2 − 12t + 1
)

f ′(t) + 12
(

32t3 − 6t2 − 12t− 1
)

f (t) = 0,

f (t) = F(1, t) where F(x, t) is the unique solution in Q[x][[t]] of

F(x, t) = 1 + tx2 F(x, t)2 + tx
xF(x, t)− F(1, t)

x− 1
,

f (t) = F(1, 1, t) where F(x, y, t) is the unique solution in Q[x, y][[t]] of

F(x, y, t) = 1+ tyF(x, y, t)+ tx
F(x, y, t)− F(x, 0, t)

y
+ t

F(x, y, t)− F(0, y, t)
x

.
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D-finite power series

▷ Definition: A power series f in Q[[t]] is called D-finite (differentially finite) if
it is a solution of some LDE (i.e., linear ODE)

cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0

for some ci ∈ Q(t), with cr nonzero. (r is called the order of this LDE.)
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▷ Definition: A power series f in Q[[t]] is called D-finite (differentially finite) if
it is a solution of some LDE (i.e., linear ODE)

cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0

for some ci ∈ Q(t), with cr nonzero. (r is called the order of this LDE.)

▷ Examples:

exp(t) := ∑n≥0 tn/n!, solution of f ′(t) = f (t)
log(1− t) := −∑n≥1 tn/n, solution of (t− 1) f ′′(t) + f ′(t) = 0

N
√

R(t) for R ∈ Q(t), solution of f ′(t)/ f (t) = 1
N R′(t)/R(t)

any algebraic power series (“Abel’s theorem”)

arctan(t), solution of (t2 + 1) f ′′(t) + 2t f ′(t) = 0, but not tan(t)
sums and products of D-finite are D-finite
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▷ Definition: A power series f in Q[[t]] is called D-finite (differentially finite) if
it is a solution of some LDE (i.e., linear ODE)

cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0

for some ci ∈ Q(t), with cr nonzero. (r is called the order of this LDE.)

▷ Examples:
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log(1− t) := −∑n≥1 tn/n, solution of (t− 1) f ′′(t) + f ′(t) = 0

N
√

R(t) for R ∈ Q(t), solution of f ′(t)/ f (t) = 1
N R′(t)/R(t)

any algebraic power series (“Abel’s theorem”)

arctan(t), solution of (t2 + 1) f ′′(t) + 2t f ′(t) = 0, but not tan(t)
sums and products of D-finite are D-finite

▷ Simple but important property: ∑n≥0 antn is D-finite if and only if (an)n≥0
is P-finite (i.e., it satisfies a linear recurrence with coefficients in Q[n])
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Linear differential operators

• Q(t)⟨∂t⟩ = the (non-commutative) algebra of linear differential operators
(“skew polynomials”) L = cr(t)∂r

t + · · ·+ c1(t)∂t + c0(t) with ci ∈ Q(t)

• Usual +; skew multiplication ⋆ defined by ∂t ⋆ R(t) = R(t) ⋆ ∂t + R′(t)
• Commutation rule models Leibniz’s rule (RS)′ = RS′ + R′S

−→ algebraic formalization of the notion of LDE

cr(t)y(r)(t) + · · ·+ c1(t)y′(t) + c0(t)y(t) = 0

⇐⇒
L (y) = 0, where L = cr(t)∂r

t + · · ·+ c1(t)∂t + c0(t)

▷ If cr ̸= 0, then r = deg∂t
(L ) is called the order of L , denoted ord(L )

Theorem [Libri 1833; Brassinne 1864; Wedderburn 1932; Ore 1932]

Q(t)⟨∂t⟩ is a non-commutative (right) Euclidean domain: for A ∈ Q(t)⟨∂t⟩
and B ∈ Q(t)⟨∂t⟩ \ {0}, there exist unique Q, R ∈ Q(t)⟨∂t⟩ such that

A = QB +R and ord(R) < ord(B).

(This is called the Euclidean right division of A by B.)
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Linear differential operators

• Q(t)⟨∂t⟩ = the (non-commutative) algebra of linear differential operators
(“skew polynomials”) L = cr(t)∂r

t + · · ·+ c1(t)∂t + c0(t) with ci ∈ Q(t)
• Usual +; skew multiplication ⋆ defined by ∂t ⋆ R(t) = R(t) ⋆ ∂t + R′(t)
• Commutation rule models Leibniz’s rule (RS)′ = RS′ + R′S

−→ algebraic formalization of the notion of LDE
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⇐⇒
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t + · · ·+ c1(t)∂t + c0(t)

▷ If cr ̸= 0, then r = deg∂t
(L ) is called the order of L , denoted ord(L )
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(This is called the Euclidean right division of A by B.)
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Main question today: How to decide if a D-finite power series is algebraic?

In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

Goal: Given a D-finite f ∈ Q[[t]], by a linear differential equation and
enough initial terms, determine its algebraicity or transcendence.

▷ Example: What is the nature of f (t) = 1+ 3t + 18t2 + 105t3 + · · · such that

t2 (1 + t) (1− 2t) (1 + 4t) (1− 8t) f ′′′(t) + t
(

576t4 + 200t3 − 252t2 − 33t + 5
)

f ′′(t)

+4
(

288t4 + 22t3 − 117t2 − 12t + 1
)

f ′(t) + 12
(

32t3 − 6t2 − 12t− 1
)

f (t) = 0?
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Main question today: How to decide if a D-finite power series is algebraic?

In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

Equivalent goal: Given a P-finite sequence of rational numbers (an)n≥0 by
a linear recurrence and enough initial terms, determine the algebraicity or
the transcendence of its generating function ∑n≥0 antn.

▷ Example: What is the nature of f (t) = ∑n≥0 antn, where (an)n≥0 is defined
by a0 = 1, a1 = 3, a2 = 18, a3 = 105 and

(n + 4) (n + 5)2 an+4 − (n + 4)
(

5n2 + 43n + 96
)

an+3 − 6 (5n + 22) (n + 4) (n + 3) an+2

+8 (n + 2)
(

5n2 + 15n + 1
)

an+1 + 64 (n + 3) (n + 2) (n + 1) an = 0?

▷ NB: Integrality and algebraicity are related; deciding integrality is harder!
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]

E.g.,

f = ln(1− t) = −t− t2

2
− t3

3
− t4

4
− t5

5
− t6

6
− · · ·

is D-finite and can be represented by the second-order LDE(
(t− 1)∂2

t + ∂t

)
( f ) = 0, f (0) = 0, f ′(0) = −1.

▷ An algorithm should recognize (from this data) that f is transcendental.
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]

▷ Notation: For a D-finite series f , we write L min
f for the least-order, monic,

linear differential operator in Q(t)⟨∂t⟩ that cancels f .
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▷ Notation: For a D-finite series f , we write L min
f for the least-order, monic,

linear differential operator in Q(t)⟨∂t⟩ that cancels f .

▷ Warning: L min
f is not known a priori; only some multiple L of it is given.
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]

▷ Notation: For a D-finite series f , we write L min
f for the least-order, monic,

linear differential operator in Q(t)⟨∂t⟩ that cancels f .

▷ Warning: L min
f is not known a priori; only some multiple L of it is given.

▷ Difficulty: L min
f might not be irreducible. E.g., L min

ln(1−t) =
(

∂t +
1

t−1

)
∂t.
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Related problems

L (y(t)) := cr(t)y(r)(t) + · · ·+ c0(t)y(t) = 0

(S) Stanley’s problem: Decide if a given solution f of L (y) = 0 is algebraic

(F) Fuchs’ problem: Decide if all solutions of L (y) = 0 are algebraic

(L) Liouville’s problem: Decide if L (y) = 0 has at least one algebraic
solution ( ̸= 0)

▷ When L is irreducible, problems (S), (F) and (L) are equivalent

Today’s main results: how to solve (S), (F) and (L) for arbitrary L
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Motivations

Number theory: a first step towards proving the transcendence of a
complex number is proving that some power series is transcendental

Combinatorics: the nature of generating functions may reveal strong
underlying structures

Computer science: are algebraic power series (intrinsically) easier to
manipulate?
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Three examples

(A) Apéry’s power series [Apéry, 1978] (used in his proof of ζ(3) /∈ Q)

∑
n

n

∑
k=0

(
n
k

)2(n + k
k

)2
tn = 1 + 5 t + 73 t2 + 1445 t3 + 33001 t4 + · · ·

(B) GF of trident walks in the quarter plane

∑
n

antn = 1 + 2 t + 7 t2 + 23 t3 + 84 t4 + 301 t5 + 1127 t6 + · · · ,

where an = #
{

−walks of length n in N2 starting at (0, 0)
}

(C) GF of a quadrant model with repeated steps

∑
n

antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + 520 t6 + · · · ,

where an = #
{

−walks of length n in N2 from (0, 0) to (⋆, 0)
}

Question: How to prove that these three power series are transcendental?
Question: How to prove that these three power series are transcendental?
Question: How to prove that these three power series are transcendental?
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Three examples

(A) Apéry’s power series [Apéry, 1978] (used in his proof of ζ(3) /∈ Q)

∑
n

n

∑
k=0

(
n
k

)2(n + k
k

)2
tn = 1 + 5 t + 73 t2 + 1445 t3 + 33001 t4 + · · ·

(B) GF of trident walks in the quarter plane

∑
n

antn = 1 + 2 t + 7 t2 + 23 t3 + 84 t4 + 301 t5 + 1127 t6 + · · · ,

where an = #
{

−walks of length n in N2 starting at (0, 0)
}

(C) GF of a quadrant model with repeated steps

∑
n

antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + 520 t6 + · · · ,

where an = #
{

−walks of length n in N2 from (0, 0) to (⋆, 0)
}

Question: What is the nature of these three power series?
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Transcendence criteria
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Main properties of algebraic series

If f = ∑n antn ∈ Q[[t]] is algebraic, then

Algebraic properties
f is D-finite and L min

f has only algebraic solutions [Abel, 1827; Tannery, 1875]

Arithmetic properties
• f is globally bounded: ∃C ∈N∗ with anCn ∈ Z for n ≥ 1 [Eisenstein, 1852]

In particular, denominators of an’s have finitely many prime divisors

• ∂
p
t mod L min

f = 0 (mod p) for primes p≫ 0 “Cartier’s Lemma” [Katz, 1970]

Analytic properties(⋆)

• f (t) has finite nonzero radius of convergence
• (an)n has “nice” asymptotics [Puiseux, 1850; Darboux, 1878; Flajolet, 1987]

Typically, an ∼ κ ρn nα with α ∈ Q \Z<0 and ρ ∈ Q and κ · Γ(α + 1)︸ ︷︷ ︸
:=
∫ ∞

0 tαe−t dt

∈ Q
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Main properties of algebraic series

If f = ∑n antn ∈ Q[[t]] is algebraic, then

Algebraic properties
f is D-finite and L min

f has only algebraic solutions [Abel, 1827; Tannery, 1875]

Arithmetic properties
• f is globally bounded: ∃C ∈N∗ with anCn ∈ Z for n ≥ 1 [Eisenstein, 1852]

In particular, denominators of an’s have finitely many prime divisors

• ∂
p
t mod L min

f = 0 (mod p) for primes p≫ 0 “Cartier’s Lemma” [Katz, 1970]

Analytic properties(⋆)

• f (t) has finite nonzero radius of convergence
• (an)n has “nice” asymptotics [Puiseux, 1850; Darboux, 1878; Flajolet, 1987]

Typically, an ∼ κ ρn nα with α ∈ Q \Z<0 and ρ ∈ Q and κ · Γ(α + 1)︸ ︷︷ ︸
:=
∫ ∞

0 tαe−t dt

∈ Q

(⋆) “It is usually ‘easy’ to establish transcendence of functions, by exhibiting a local
expansion that contradicts the Newton–Puiseux Theorem” [Flajolet, Sedgewick, 2009]
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. . . and the resulting transcendence criteria

For f = ∑n antn ∈ Q[[t]], if one of the following holds

f is not D-finite ∏
n≥1

1
1− tn

f has infinitely many primes in the denominators ∑
n≥1

1
n

tn

(an)n has incompatible asymptotics ∑
n≥0

n

∑
k=0

(
n
k

)2(n + k
k

)2
tn (†)

∂
p
t mod L min

f ̸= 0 (mod p) for infinitely many primes p exp(t)

then f is transcendental

The Grothendieck-Katz conjecture predicts last criterion is an equivalence (!)

(†) an ∼ (1+
√

2)4n+2

29/4π3/2n3/2 and Γ(−1/2)
π3/2 = − 2

π /∈ Q
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∂
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Hypergeometric case
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Hypergeometric series

algebraic

hypergeometric

D-finite

f (t) = ∑∞
n=0 antn ∈ Q[[t]] is

▷ algebraic if P
(
t, f (t)

)
= 0 for some P(x, y) ∈ Z[x, y] \ {0}

▷ D-finite if cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0 for some ci ∈ Z[t], not all zero

▷ hypergeometric if an+1
an
∈ Q(n). E.g.,
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Hypergeometric series
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n=0 antn ∈ Q[[t]] is
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(
t, f (t)

)
= 0 for some P(x, y) ∈ Z[x, y] \ {0}

▷ D-finite if cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0 for some ci ∈ Z[t], not all zero

▷ hypergeometric if an+1
an
∈ Q(n). E.g., ln(1− t); arcsin(

√
t)√

t
; (1− t)α, α ∈ Q
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Hypergeometric series

algebraic

hypergeometric

D-finite

f (t) = ∑∞
n=0 antn ∈ Q[[t]] is
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(
t, f (t)

)
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▷ D-finite if cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0 for some ci ∈ Z[t], not all zero

▷ hypergeometric if an+1
an
∈ Q(n). E.g., 2 F1

(
α β
γ

∣∣∣∣ t
)
=

∞

∑
n=0

(α)n(β)n

(γ)n

tn

n!
, (δ)n =

n−1

∏
ℓ=0

(δ + ℓ)
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t, f (t)
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▷ D-finite if cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0 for some ci ∈ Z[t], not all zero

▷ hypergeometric if an+1
an
∈ Q(n). E.g., p Fq

(
α1 · · · αp
β1 · · · βq

∣∣∣∣ t
)
=

∞

∑
n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

tn

n!
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Hypergeometric series
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hypergeometric
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(
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∣∣∣∣ t
)
=

∞

∑
n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

tn

n!

Theorem [Schwarz 1873; Landau 1904, 1911; Stridsberg 1911; Errera 1913; Katz 1972;
Christol 1986; Beukers, Heckman 1989; Katz 1990; Fürnsinn, Yurkevich 2024]

Full characterization of { hypergeom } ∩ { algebraic }
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Algebraic hypergeometric series

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {a1, . . . , ak} and {b1, . . . , bk−1, bk = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFk−1

(
a1 a2 · · · ak
b1 · · · bk−1

∣∣∣∣ t
)

is algebraic iff {e2πiraj , j ≤ k} and {e2πirbℓ , ℓ ≤ k}

interlace on the unit circle for all 1 ≤ r < D with gcd(r, D) = 1.

be two sets of rational parameters, assumed disjoint modulo Z. be two sets

of rational parameters, assumed disjoint modulo Z. be two sets of rational
parameters, assumed disjoint modulo Z. be two sets of rational parameters,
assumed disjoint modulo Z. be two sets of rational parameters, assumed
disjoint modulo Z. be two sets of rational parameters, assumed disjoint
modulo Z. be two sets of rational parameters, assumed disjoint modulo Z.
be two sets of rational parameters, assumed disjoint modulo Z. be two sets
of rational parameters, assumed disjoint modulo Z. be two sets of rational
parameters, assumed disjoint modulo Z. be two sets of rational parameters,
assumed disjoint modulo Z. be two sets of rational parameters, assumed
disjoint modulo Z.
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Algebraic hypergeometric series

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {a1, . . . , ak} and {b1, . . . , bk−1, bk = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFk−1

(
a1 a2 · · · ak
b1 · · · bk−1

∣∣∣∣ t
)

is algebraic iff {e2πiraj , j ≤ k} and {e2πirbℓ , ℓ ≤ k}

interlace on the unit circle for all 1 ≤ r < D with gcd(r, D) = 1.

▷ ∑
n

(30n)!n!
(15n)!(10n)!(6n)!

tn = 8F7

( 1
30

7
30

11
30

13
30

17
30

19
30

23
30

29
30

1
5

1
3

2
5

1
2

3
5

2
3

4
5

∣∣∣∣ 214 39 55 t
)

is algebraic
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assumed disjoint modulo Z. Let D be their common denominator. Then

kFk−1

(
a1 a2 · · · ak
b1 · · · bk−1

∣∣∣∣ t
)

is algebraic iff {e2πiraj , j ≤ k} and {e2πirbℓ , ℓ ≤ k}

interlace on the unit circle for all 1 ≤ r < D with gcd(r, D) = 1.

▷ ∑
n

(2n)!(5n)!2

(3n)!4
tn = 9F8

( 1
5

1
5

2
5

2
5

1
2

3
5

3
5

4
5

4
5

1
3

1
3

1
3

1
3

2
3

2
3

2
3

2
3

∣∣∣∣ 22 510

312 t
)

is transcendental
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)

is algebraic iff {e2πiraj , j ≤ k} and {e2πirbℓ , ℓ ≤ k}

interlace on the unit circle for all 1 ≤ r < D with gcd(r, D) = 1.

▷ 3F2

( 1
9

4
9

5
9

1
2

1
3

∣∣∣∣ 36 t
)
= 1 + 120 t + 54600 t2 + 29995680 t3 + 17853428736 t4 +

11111241596928 t5 + 7114982545305600 t6 + · · · is transcendental
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9

1
2

1
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= 1 + 120 t + 54600 t2 + 29995680 t3 + 17853428736 t4 +
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13 t7 + · · · is transcendental
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Algebraicity of hypergeometric series with arbitrary parameters

Theorem [Fürnsinn, Yurkevich, 2024]

A hypergeometric series F = pFq ∈ Q[[t]] \Q[t] is algebraic if and only if its
contraction Fc has parameters in Q and satisfies the interlacing criterion.

(Fc is obtained from F by removing all pairs (aj, bℓ) with aj − bℓ ∈N.)

be two sets of rational parameters, assumed disjoint modulo Z. be two sets

of rational parameters, assumed disjoint modulo Z. be two sets of rational
parameters, assumed disjoint modulo Z. be two sets of rational parameters,
assumed disjoint modulo Z. be two sets of rational parameters, assumed
disjoint modulo Z. be two sets of rational parameters, assumed disjoint
modulo Z. be two sets of rational parameters, assumed disjoint modulo Z.
be two sets of rational parameters, assumed disjoint modulo Z. be two sets
of rational parameters, assumed disjoint modulo Z. be two sets of rational
parameters, assumed disjoint modulo Z. be two sets of rational parameters,
assumed disjoint modulo Z. be two sets of rational parameters, assumed
disjoint modulo Z.
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Algebraicity of hypergeometric series with arbitrary parameters

Theorem [Fürnsinn, Yurkevich, 2024]

A hypergeometric series F = pFq ∈ Q[[t]] \Q[t] is algebraic if and only if its
contraction Fc has parameters in Q and satisfies the interlacing criterion.

(Fc is obtained from F by removing all pairs (aj, bℓ) with aj − bℓ ∈N.)

Is F algebraic?
aj ∈ −N

for some j? p = q + 1? Parameters
of Fc in Q? Fc reduced? IC for Fc?

F is transcendental

F is algebraic

no yes yes yes

no

yes
yes

no no no
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Stanley’s problem
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]

E.g.,

f = ln(1− t) = −t− t2

2
− t3

3
− t4

4
− t5

5
− t6

6
− · · ·

is D-finite and can be represented by the second-order equation(
(t− 1)∂2

t + ∂t

)
( f ) = 0, f (0) = 0, f ′(0) = −1.

▷ An algorithm should recognize (from this data) that f is transcendental.
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A few starting remarks on Stanley’s problem

▷ Analogy between transcendence in Q[[t]] and irreducibility in Q[t]:
“generic” series are transcendent, “generic” polynomials are irreducible

sufficient criteria exist (e.g., Eisenstein’s), but none is also necessary

irreducibility is decidable; what about transcendence?

▷ The minimal polynomial can have arbitrarily large size (degrees) w.r.t. the
size (order/degree) of the differential equation:

solution of N(t− 1) f ′(t)− f (t) = 0, f (0) = 1 satisfies f N = 1− t

▷ No characterization for coefficient sequences of algebraic power series

larger class: D-finite functions⇐⇒ P-finite sequences
smaller class: rational functions⇐⇒ C-finite sequences

diagonals Christol’s⇐====⇒
conjecture

P-finite, almost integer, seq. with geometric growth

(NB: in positive characteristic p, algebraic functions⇐⇒ p-automatic sequences)
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A bit of history “We are dwarfs perched on the shoulders of giants”

▷ [Liouville, 1833]: algorithm for (basis of) rational solutions of LDEs
−→ solves the rational versions (Srat), (Frat) and (Lrat) of (S), (F) and (L)

▷ [Fuchs, 1866]: characterization of LDEs having only rational solutions
−→ alternative solution to (Frat)

▷ [Schwarz, 1873]: solution to (F) for second order LDEs with 3 singular points
(Gauss hypergeometric equation t(t− 1)y′′ + ((a+b+1)t−c)y′ + aby = 0)

▷ [Baldassarri & Dwork 1979]: solution to (F) for arbitrary second order LDEs,
building on works by [Klein, 1878] and [Fuchs, 1878]

▷ [Singer, 1979]: full solution to (F) building on works by [Jordan, 1880],
[Painlevé, 1887], [Boulanger, 1898] and [Risch, 1969]

▷ [Katz, 1972, 1982], [André, 2004]: Grothendieck–Katz p-curvature conjecture:
local-global principle for LDEs, (conjectural) arithmetic solution to (F)

▷ Many tools: geometry (Schwarz, Klein), invariant theory (Fuchs, Gordan),
group theory (Jordan), diff. Galois theory (Vessiot, Singer, Hrushovski),
number theory and algebraic geometry (Grothendieck, Katz, André)
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Guess-and-Prove
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Guess-and-Prove for Gessel walks

• g(i, j, n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

▷ Question: What is the nature of the generating function

G(x, y, t) =
∞

∑
i,j,n=0

g(i, j, n) xiyjtn ?
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• g(i, j, n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

▷ Question: What is the nature of the generating function

G(x, y, t) =
∞

∑
i,j,n=0

g(i, j, n) xiyjtn ?

▷ Algebraic reformulation: Solve the “kernel equation”

G (x, y, t) =1 + t
(

xy + x +
1

xy
+

1
x

)
G(x, y, t)

− t
(

1
x
+

1
x

1
y

)
G(0, y, t)− t

1
xy

(
G(x, 0, t)− G(0, 0, t)

)
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Guess-and-Prove for Gessel walks

• g(i, j, n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

▷ Question: What is the nature of the generating function

G(x, y, t) =
∞

∑
i,j,n=0

g(i, j, n) xiyjtn ?

Answer: [B., Kauers, 2010] G(x, y, t) is an algebraic function†.

▷ Approach:
1 Generate data: compute G(x, y, t) to precision t1200 (≈ 1.5 billion coeffs!)
2 Guess: conjecture polynomial equations for G(x, 0, t) and G(0, y, t)

(degree 24 each, coeffs. of degree (46, 56), with 80-bit digits coeffs.)
3 Prove: multivariate resultants of (very big) polynomials (30 pages each)

† Minimal polynomial P(G(x, y, t); x, y, t) = 0 has > 1011 terms; ≈ 30 Gb (6 DVDs!)
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An easier, but typical Guess-and-Prove algebraicity proof

Theorem [“Gessel excursions are algebraic”]

The unique solution g(t) = 1 + 2 t + 11 t2 + · · · in Q[[t]] of
(⋆) 3 t2 (16 t− 1)g′′′(t) + 2 t (128 t− 7) g′′(t) + 2 (122 t− 5) g′(t) + 20 g(t) = 0
is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Find P such that P(t, g(t)) = 0 mod t100 by (structured) linear algebra.

2 Implicit function theorem: ∃ root r(t) ∈ Q[[t]] of P with r(0) = 1.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite and satisfies (⋆) =⇒ since

r(t) = 1 + 2 t + 11 t2 + · · · , by uniqueness g = r, hence g is algebraic.

> gs:=op(-1, dsolve(deqg, g(t), series, order = 100)):
> P:=gfun:-seriestoalgeq(gs, g(t))[1]:
> gfun:-diffeqtohomdiffeq(gfun:-algeqtodiffeq(P, g(t), g(t)), g(t));
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▷ The approach applies (in principle) to any instance of Stanley’s problem.
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Singer’s algorithm
and

Stanley’s problem
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Singer’s algorithm

Problem (F): Decide if all solutions of a given LDE L of order r are algebraic

• Starting point [Jordan, 1878]: If so, then for some solution y of L , u = y′/y
has alg. degree at most (49r)r2

and satisfies a Riccati equation of order r− 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]

1 Decide if the Riccati equation has an algebraic solution u of degree at
most (49r)r2

degree bounds + algebraic elimination
2 (Abel’s problem) Given an algebraic u, decide whether y′/y = u has an

algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

▷ [Singer, 1979]: generalization to any input L −→ requires LDE factoring

▷ [Singer, 2014; B., Salvy, Singer, 2024]: compute L alg, factor of L whose
solution space is spanned by alg. solutions of L −→ requires LDE factoring
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Application to Stanley’s problem

Problem (S): Decide if a D-finite power series f ∈ Q[[t]], given by an LDE
L ( f ) = 0 and sufficiently many initial terms, is transcendental.

Algorithm for problem (S) [B., Salvy, Singer, 2024]

1 Compute L alg

2 Decide if L alg annihilates f

▷ Benefit: Solves (in principle) problems (S), (F), (L): algebraicity is decidable

▷ Drawbacks: Step 1 involves impractical bounds & requires LDE factorization

▷ LDE factorization is effective
[Fabry, 1885], [Markov, 1891], [Grigoriev, 1990], [van Hoeij, 1997]

▷ . . . but possibly extremely costly: complexity (NL)O(r4),
with L = bitsize(L ) and N = e(L·2

r)o(2r )
[Grigoriev, 1990]
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A practical method, based on Minimization
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Practical method: the basic idea

Problem (S): Decide if a D-finite power series f ∈ Q[[t]], given by an LDE
L ( f ) = 0 and sufficiently many initial terms, is transcendental.

Key property: If L min
f has a log singularity, then f is transcendental.

▷ Pros and cons: Avoids factorization of L , but requires to compute L min
f .
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Ex. (A): Apéry’s power series

Theorem (Apéry’s power series is transcendental)

f (t) = ∑
n

Antn, where An =
n

∑
k=0

(
n
k

)2(n + k
k

)2
, is transcendental.

Proof:
1 Creative telescoping: [Zagier, 1979], [Zeilberger, 1990]

(n + 1)3 An+1 + n3 An−1 = (2 n + 1) (17 n2 + 17 n + 5)An, A0 = 1, A1 = 5

2 Conversion from recurrence to differential equation L ( f ) = 0, where

L = (t4 − 34t3 + t2)∂3
t + (6t3 − 153t2 + 3t)∂2

t + (7t2 − 112t + 1)∂t + t− 5

3 Minimization: [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2024]
compute least-order L min

f in Q(t)⟨∂t⟩ such that L min
f ( f ) = 0

4 Local solutions of L min
f : [Frobenius, 1873], [Chudnovsky2, 1987]{

1 + 5t + O(t2), ln(t) + (5 ln(t) + 12)t + O(t2), ln(t)2 + (5 ln(t)2 + 24 ln(t))t + O(t2)
}

5 Conclusion: f is transcendental†

† f algebraic would imply a full basis of algebraic solutions for L min
f [Tannery, 1875].
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The new method: a first version

Input: A D-finite f (t) ∈ Q[[t]], given by an LDE L ( f ) = 0 plus initial terms
Output: T if f (t) is transcendental, A if f (t) is algebraic

▷ Principle: (S) is reduced to (F) via minimization

Second algorithm for problem (S) [B., Salvy, Singer, 2024]

1 Compute L min
f [B., Rivoal, Salvy, 2024]

2 Decide if L min
f has only algebraic solutions; if so return A, else

return T. [Singer, 1979]

▷ Benefit: Solves (in principle) Stanley’s problem (S): algebraicity is decidable

▷ Drawback: Step 2 can be very costly in practice.
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The new method: a more efficient version

Input: A D-finite f (t) ∈ Q[[t]], given by an LDE L ( f ) = 0 plus initial terms
Output: T if f (t) is transcendental, A if f (t) is algebraic

Third algorithm for problem (S) [B., Salvy, Singer, 2024]

1 Compute L min
f [B., Rivoal, Salvy, 2024]

2 If L min
f has a logarithmic singularity, return T; otherwise return A

▷ This algorithm is always correct when it returns T

▷ Conjecturally, under the additional assumption that f is globally bounded♢,
it is also always correct♣ when it returns A [Christol, 1986], [André, 1997]

♢ E.g. if f is given as GF of a binomial sum, or as the diagonal of a rational function
♣ NB: not true without the global boundedness assumption, e.g. f (t) = 2F1

( 1
6

5
6

7
6

∣∣∣∣ t
)
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Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let an = #
{

−walks of length n in N2 from (0, 0) to (⋆, 0)
}

. Then

f (t) = ∑n antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + · · · is transcendental.
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. Then

f (t) = ∑n antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + · · · is transcendental.

Proof:
1 Discover and certify a differential equation L for f (t) of order 11 and

degree 73 high-tech Guess-and-Prove
2 If ord(L min

f ) ≤ 10, then degt(L
min
f ) ≤ 580 apparent singularities

3 Rule out this possibility differential Hermite-Padé approximants
4 Thus, L min

f = L

5 L has a log singularity at t = 0, and so f is transcendental □
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Summary

• Problems (S), (F), (L) on algebraicity of solutions of LDEs are decidable

• In practice, proving transcendence is easier than proving algebraicity (!)

• LDE minimization is a practical alternative for proving transcendence

−→ allows to solve difficult problems from applications

−→ also useful in other contexts (effective Siegel-Shidlovskii)

• Guess-and-Prove is a powerful method for proving algebraicity

−→ robust: adapts to other functional equations

−→ main limitation: output size!

• Brute-force / naive algorithms −→ hopeless on “real-life” applications
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Thanks for your attention!
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