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Algebraic and

> Definition: A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f(t)) = 0, where P € Q[x,y] \ {0}.

Otherwise, f is called transcendental.

> Examples:
© polynomials in Q[¢]
© rational functions R in Q(#) with no pole at t =0
© all powers R* for « € Q and R(0) =1
© sums and products of algebraic power series are algebraic
© the GF )~ C;,t" of Dyck walks in NG

2
G = 77 (3))

0 2% 2n

> Def extends to Laurent series f € Q((t)) and Puiseux series f € Q((t/*))
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Algebraic and transcend

> Definition: A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f(t)) = 0, where P € Q[x,y] \ {0}.

Otherwise, f is called transcendental.

> Examples:
© polynomials in Q[¢]
© rational functions R in Q(#) with no pole at t =0
© all powers R* for « € Q and R(0) =1
© sums and products of algebraic power series are algebraic
© the GF )~ C;yt" of Dyck walks in NG

2,
Cn = %H(nn)

0 2% 2n

Goal: Given f € Q[[t]], either in explicit form (by a formula), or in implicit
form (by a functional equation), determine its algebraicity or transcendence.
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Examples (I): p
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> Which ones are algebraic?
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> Which ones are algebraic?
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© f(t) =1+ 3t+18t> + 105> + - - -, the unique solution of
£ (14 1) (1-28) (1+4) (1 81) 7 (t) +  (576t* + 2008 — 25262 ~ 33t +5) (1)

+4 (288 4226 — 1176 — 12t 1) £/(1) + 12 (32t3 — 62— 12t — 1) f(t) =0,
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Exa

© f(t) =1+ 3t+18t> + 105> + - - -, the unique solution of
£ (14 1) (1-28) (1+4) (1 81) 7 (t) +  (576t* + 2008 — 25262 ~ 33t +5) (1)

+4 (288t4 +228 1172 — 12t + 1) (1) +12 (32t3 — 62 — 12t — 1) f(t) =0,

® f(t) = F(1,t) where F(x,t) is the unique solution in Q[x][[t]] of

—F(1,¢t
F(x,t) =1+ tx® F(x, )% + tx %

7/ 4
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Examples (II):

© f(t) =1+ 3t+18t> + 105> + - - -, the unique solution of

£ (14£) (1—2t) (1+4t) (1—8t) £ (t) + ¢ (576t4 + 2008 — 25262 — 33t + 5) £(t)

+4 (288t4 +228 1172 — 12t + 1) (1) +12 (32t3 — 62 — 12t — 1) f(t) =0,

® f(t) = F(1,t) where F(x,t) is the unique solution in Q[x]|[[¢]] of
F(x,t) =1+ tx® F(x, )% + tx w
® f(t) = F(1,1,t) where F(x,y,t) is the unique solution in Q[x, y][[t]] of

F(x,y,t) — F(x,0,t) 4t F(x,y,t) — F(0,y,t)
y x '

F(x,y,t) = 1+ tyF(x,y,t) +tx

> Which ones are algebraic?
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> Definition: A power series f in Q[[t]] is called D-finite (differentially finite) if
it is a solution of some LDE (i.e., linear ODE)

er()fO (D) + - +ao()f(1) =0
for some ¢; € Q(t), with ¢, nonzero. (r is called the order of this LDE.)

Euop 1. Combinaovics (1950)1,175-185

Differentiably Finite Power Series
R. P Stanev®

Manuel Kauers
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> Definition: A power series f in Q[[t]] is called D-finite (differentially finite) if
it is a solution of some LDE (i.e., linear ODE)
er(fO (1) + -+ eo(t)f(1) =0

for some ¢; € Q(t), with ¢, nonzero. (r is called the order of this LDE.)

> Examples:
© exp(t) ==Y, >0 t"/n!, solution of f'(t) = f(t)
© log(1 —t) == — Y51 "/n, solution of (t —1)f"(t) + f'(t) =0
© \/R(t) for R € Q(t), solution of f'(t)/f(t) = &R'(t)/R(t)
© any algebraic power series (“Abel’s theorem”)
© arctan(t), solution of (t> + 1) f”(t) + 2tf'(t) = 0, but not tan(t)
© sums and products of D-finite are D-finite
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> Definition: A power series f in Q[[t]] is called D-finite (differentially finite) if
it is a solution of some LDE (i.e., linear ODE)

() fD () + -+ (D f () =0

for some ¢; € Q(t), with ¢, nonzero. (r is called the order of this LDE.)

> Examples:
© exp(t) =Y~ t"/n!, solution of f'(t) = f(t)
© log(1—1t) = —Y,>1 t"/n, solution of (t —1)f"(t) + f'(t) =0
© Y/R(t) for R € Q(t), solution of f'(t)/f(t) = §R'(t)/R(t)
© any algebraic power series (“Abel’s theorem”)
© arctan(t), solution of (> +1)f"(t) +2tf'(t) = 0, but not tan(t)
© sums and products of D-finite are D-finite

> Simple but important property: Y,>( a,t" is D-finite if and only if (a,),>0
is P-finite (i.e., it satisfies a linear recurrence with coefficients in Q[n])
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e Q(t)(9¢) = the (non-commutative) algebra of linear differential operators
(“skew polynomials”) & = c,(t)0] + - - - + c1(£)9; + co(t) with ¢; € Q(¢)
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Line

e Q(t)(9¢) = the (non-commutative) algebra of linear differential operators
(“skew polynomials”) & = c,(t)0] + - - - + c1(£)9; + co(t) with ¢; € Q(¢)

e Usual +; skew multiplication * defined by 9y x R(t) = R(t) x9; + R'(t)
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ZL(y) =0, where £ =c¢ ()34 --+c1(t)o+co(t)
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Linear differential operators

e Q(t)(9¢) = the (non-commutative) algebra of linear differential operators
(“skew polynomials”) & = c,(t)0] + - - - + c1(£)9; + co(t) with ¢; € Q(¢)

e Usual +; skew multiplication * defined by 9y x R(t) = R(t) x9; + R'(t)

e Commutation rule models Leibniz’s rule (RS)’ = RS’ + R’S

— algebraic formalization of the notion of LDE

(Y () + -+ e ()Y () + co(t)y(t) =0
=
Z(y)=0, where Z=c,(t)o]+ -+ c1(t)+co(t)

> If ¢ # 0, then r = deg, (.£) is called the order of ., denoted ord(.%)

Theorem [Libri 1833; Brassinne 1864; Wedderburn 1932; Ore 1932]

Q(t)(9¢) is a non-commutative (right) Euclidean domain: for o7 € Q(#)(0¢)
and # € Q(t)(0) \ {0}, there exist unique 2, Z € Q(t)(9¢) such that

o =2#+% and ord(Z) < ord(Z).

(This is called the Euclidean right division of .« by A.)
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In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

Goal: Given a D-finite f € Q[[t]], by a linear differential equation and
enough initial terms, determine its algebraicity or transcendence.

& Example: What is the nature of f(t) = 1+ 3t + 182 4+ 105> + - - - such that
£ (14£) (1—2t) (1+4t) (1—88) f(£) + ¢ (576t4 + 2006 — 25212 — 33t + 5) (1)

+4 (288t4 +226 — 11762 — 12t +1) £1(1) +12 (32t3 — 62— 12t — 1) f(t)y=0?

11/ 41
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Main question today: How

In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

Equivalent goal: Given a P-finite sequence of rational numbers (a;),>0 by
a linear recurrence and enough initial terms, determine the algebraicity or
the transcendence of its generating function Y-~ a,t".

> Example: What is the nature of f(t) = Y_,,>0 ant", where (a,),>0 is defined
by ay = 1,u1 = 3,412 = 18,113 =105 and

(1 +4) (1+5) aypa — (n+4) (502 + 430 +96) a3 — 6 (51 +22) (n +4) (14 3) a2
+8(n+2) (5n2 +15n+1) yi1 +64(n+3) (n+2) (n+1)a, =0?
> NB: Integrality and algebraicity are related; deciding integrality is harder!

11/ 41
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Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]

Eg.,

is D-finite and can be represented by the second-order LDE
(t=1F+a1) () =0, F(0)=0,f(0) = 1.

> An algorithm should recognize (from this data) that f is transcendental.

12/41

" AlinBostan (Inria, France) How to decide if a D-finite power series is algebraic?



Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write MmN for the least-order, monic,
linear differential operator in Q(t)(d;) that cancels f.
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write min for the least-order, monic,
linear differential operator in Q(¢)(9;) that cancels f.

> Warning: ,S,”}“in is not known a priori; only some multiple .Z of it is given.
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write MmN for the least-order, monic,
linear differential operator in Q(t)(d;) that cancels f.

> Warning: ﬁf‘m is not known a priori; only some multiple .Z of it is given.

> Difficulty: f}mn might not be irreducible. E.g., jm(i{‘i H= (8t + ﬁ) ;.

In

12 /41
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Z(y(1) = ey (1) + -+ o (Dy(t) =0

(S) Stanley’s problem: Decide if a given solution f of £ (y) = 0 is algebraic
(F) Fuchs’ problem: Decide if all solutions of £ (y) = 0 are algebraic

(L) Liouville’s problem: Decide if £ (y) = 0 has at least one algebraic
solution (# 0)
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Rel

Z(y(1) = ey (1) + -+ o (Dy(t) =0

(S) Stanley’s problem: Decide if a given solution f of £ (y) = 0 is algebraic
(F) Fuchs’ problem: Decide if all solutions of £ (y) = 0 are algebraic

(L) Liouville’s problem: Decide if £ (y) = 0 has at least one algebraic
solution (# 0)

> When . is irreducible, problems (S), (F) and (L) are equivalent

Today’s main results: how to solve (S), (F) and (L) for arbitrary .&

13 / 41
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© Number theory: a first step towards proving the transcendence of a
complex number is proving that some power series is transcendental

® Combinatorics: the nature of generating functions may reveal strong
underlying structures

©® Computer science: are algebraic power series (intrinsically) easier to
manipulate?

14 /41



Three

(A) Apéry’s power series [Apéry, 1978] (used in his proof of {(3) ¢ Q)

22( ) ("“‘) ("= 14504732 + 144563 + 33001 ¢ +
n k=0

(B) GF of trident walks in the quarter plane
Yoant" =1+42¢+478 4236 844 +301£ 4+ 11275 + -+,
n
where a, = # { i -— walks of length 1 in IN? starting at (0, 0)}
(C) GF of a quadrant model with repeated steps

Zant" =1+t+4£7 488 +3911 498 +5204° + -+,

where a, = # {% walks of length 1 in IN? from (0,0) to (%, 0)}

How to decide if a D-finite power series is algebraic?



Three ex

(A) Apéry’s power series [Apéry, 1978] (used in his proof of {(3) ¢ Q)

22( ) (”“‘) = 145647312 +14453 + 33001 ¢4 4 .
n k=0

(B) GF of trident walks in the quarter plane

Y ant" =1+42¢+7 4238 + 84 +301£° +1127£ + .-+,

n

where a, = # { } - — walks of length 7 in N2 starting at (0,0)}

(C) GF of a quadrant model with repeated steps
Ylant" =1+t+4+88 +3911 + 9817 +5204° + .-+,

n

where a, = # {%& — walks of length 7 in IN? from (0,0) to (*,0)}

Question: What is the nature of these three power series? )

How to decide if a D-finite power series is algebraic?



Transcendence criteria
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If f =13 ,a,t" € Q[[t] is algebraic, then
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If f =13 ,a,t" € Q[[t] is algebraic, then

© Algebraic properties
f is D-finite and Z;“m has only algebraic solutions  [Abel, 1827; Tannery, 1875]
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If f =13 ,a,t" € Q[[t] is algebraic, then

© Algebraic properties
f is D-finite and Z;“m has only algebraic solutions  [Abel, 1827; Tannery, 1875]

© Arithmetic properties

e fis globally bounded: 3C € IN* with a,C" € Z for n > 1 [Eisenstein, 1852]
In particular, denominators of a,’s have finitely many prime divisors

e 9! mod f}mn =0 (modp) for primes p > 0 “Cartier’s Lemma” [Katz, 1970]
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If f=Y,a,t" € Q[[t] is algebraic, then

© Algebraic properties
f is D-finite and f}“m has only algebraic solutions  [Abel, 1827; Tannery, 1875]

© Arithmetic properties

e fis globally bounded: 3C € IN* with a,C" € Z for n > 1 [Eisenstein, 1852]
In particular, denominators of a,’s have finitely many prime divisors

e 9/ mod Z =0 (modp) for primes p >0 “Cartier’s Lemma” [Katz, 1970]

© Analytic properties*)
e f(t) has finite nonzero radius of convergence
e (a,), has “nice” asymptotics [Puiseux, 1850; Darboux, 1878; Flajolet, 1987]

Typically, 2, ~ «p" n* witha € Q\ Z.gandp € Qandx- I'(a+1) €Q

———r
=g tetdt

®) “tis usually ‘easy’ to establish transcendence of functions, by exhibiting a local
expansion that contradicts the Newton—Puiseux Theorem" [Flajolet, Sedgewick, 2009]

17 / 41
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For f =Y, a,t" € Q[[t]], if one of the following holds

. .. 1
® f is not D-finite }31 T
® f has infinitely many primes in the denominators E l1?”
n>1
. . . 1 n + k n (+)
® (a,)y has incompatible asymptotics ) Z t
n>0k=0
© 9/ mod f}“i“ # 0 (modp) for infinitely many primes p exp(t)

then f is transcendental

) 4 (Aivahr2  qTC1/2) ~2¢Q

n "~ 9753/2,52 M — 5 =
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For f =Y, a,t" € Q[[t]], if one of the following holds

® f is not D-finite 11 ! -
e 1t
© f has infinitely many primes in the denominators ) %t"
n>1
. . . nom\ (n+k\? 4
©® (ay)n has incompatible asymptotics ng:m;) ( k) ( . ) g ()
© 9/ mod ffni“ # 0 (modp) for infinitely many primes p exp(t)

then f is transcendental

> The Grothendieck-Katz conjecture predicts last criterion is an equivalence (!)

Mt 4 (Va2 g TE2) ~2¢Q

n "~ 974,377,372 372

18 / 41
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Hypergeometric case
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f(t) = Lgant” € Q[[]] is

> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}
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b D-finite if ¢, (£) fU)(£) 4+ - - -+ co() f(t) = 0 for some ¢; € Z[t], not all zero
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f(t) = Lgant" € Q[[f]] is

> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}
o D-finite if ¢, (£) fU)(£) + - - - + co(t) f(£) = 0 for some ¢; € Z][t], not all zero

> hypergeometric if =1 € Q(n). E.g., In(1—t); Mh\}iﬁl; (1-1%acQ

n
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f(t) =T gant™ € Q[[t]] is

> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}

b D-finite if ¢, (£) fU)(£) + - -+ co(£) f(t) = 0 for some ¢; € Z][t], not all zero

o if Dl aB|\ _ v @ulBl _H
> hypergeometric if =7 € Q(n). E.g., 21—"1( y ‘t) n;] G O g(5+e)
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f(t) = Enigant™ € Q[[t]] is

> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}
o D-finite if ¢, (£) fU)(£) + - -+ co(£) f(£) = 0 for some ¢; € Z][t], not all zero

> hypergeometric if % € Q(n). E.g., ,F, (gi :..

3 70‘0 ¢
) E (ﬁq)n n!

n=0
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f(t) = Engant™ € Q[[t] is
> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}

b D-finite if ¢, (£) fU)(£) + - -+ co() f(£) = 0 for some ¢; € Z][t], not all zero

> hypergeometric if - € Q(n). E.g., ,F, <gi :u ) ; 7&:;” %

Full characterization of { hypergeom } N { algebraic }
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Algebraic h

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,a;} and {by,...,bx_1,bx = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFe1 (al} 2 .b. % t) is algebraic iff {2, j < k} and {2, ¢ < k}
1 0 Yk-1

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.
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Algebraic hypergeometric seri

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,a;} and {by,...,bx_1,br = 1} be two sets of rational parameters,

assumed disjoint modulo Z. Let D be their common denominator. Then

Fr_1 (al} - 'b' g t) is algebraic iff {ezmmf,j < k} and {ezni’b‘f,é <k}
1 Yk-1

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.

Groupe d’Etude d’ Analyse
ultramétrique. (1986/87) le 15 décembre 1986
N°8 , 16 pages.

Exposé n° 8

FONCTIONS HYPERGEOMETRIQUES BORNEES

GILLES CHRISTOL

PROPOSITION 3 : Toute fonction hypergéométrique F réduite et de hauteur 1
est globalement bornée si et seulement si, pour tout A tel que (A,N) =1,
les nombres exp(ZinAa‘) et exp(ZinAbl) sont entrelacés sur le cercle

unité.
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Algebraic hypergeometri

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,a;} and {by,...,br_1,br = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

Fe_1 (ul} a2 - .b. K t> is algebraic iff {ezmr"f,j < k} and {2, ¢ < k}
1 Yk-1

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.

(30m)!n! 17 111317192329
> L @myaon) en)tt =8F7(3°3 PIAPPI (2143955 )is algebraic
o (15m)1(10m)! (6n) 5351333
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Algebraic hypergeo

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,a;} and {by,...,br_1,br = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

Fe_1 (al} # - .b. Tk t> is algebraic iff {ezmmf,j < k} and {2, ¢ < k}
1 Yk-1

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.

2n)!(5n 112213344 | 92510 \
> 2 ( )3 ,4) " =gFg < 157 51 512257 752 T t | is transcendental
(3n)! 33333333
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Algebraic hypergeometric series

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,a;} and {by,...,br_1,br = 1} be two sets of rational parameters,

assumed disjoint modulo Z. Let D be their common denominator. Then

Fe—1 (HI} 2 .b. i t) is algebraic iff {¢?™"%,j < k} and {2, ¢ < k}
0 ocoo B

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.

OO0

14
> 31:‘2(919
13

11111241596928 #° + 7114982545305600 t° + - - - is transcendental

30 t) =1+ 120+ 54600 £2 + 29995680 t> + 17853428736 t* +
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Algebraic hypergeometric series

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,ar} and {by,...,bx_1,bx = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFe-1 (uél o t) is algebraic iff {¢>™"%,j < k} and {e¥™"?, ¢ < k}

b1
interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.

OOOOOO

5
9

14
> 31:‘2(9191

23
1111241596928 ° + 7114982545305600 £0 - SO4LL016493487232000 47 .y . .. is transcendental

36 t) =14 120t + 54600 2 + 29995680 > + 17853428736 t* +
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Algebraici

Theorem [Fiirnsinn, Yurkevich, 2024]

A hypergeometric series F = ,F; € Q[[t]] \ Q[t] is algebraic if and only if its
contraction F¢ has parameters in Q and satisfies the interlacing criterion.
(F¢ is obtained from F by removing all pairs (a;, by) with a; — b, € N.)
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Algebraicity of hype

Theorem [Fiirnsinn, Yurkevich, 2024]

A hypergeometric series F = ,F; € Q[[t]] \ Q[t] is algebraic if and only if its
contraction F¢ has parameters in Q and satisfies the interlacing criterion.
(F¢ is obtained from F by removing all pairs (a;, by) with a; — b, € N.)

Fis dental
no no no
no
- aj € -N Parameters
Is F algebraic? for some j? o Yes of F€ in Q? Yes F¢ reduced? Yes IC for F°?
yes

yes
F is algebraic

How to decide if a D-finite power series is algebraic?



Stanley’s problem



Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]

Eg.,
f=In(l-t)=—t—75—5———————--

is D-finite and can be represented by the second-order equation
(=132 +a:) () =0, f(0)=0,f(0) = 1.

> An algorithm should recognize (from this data) that f is transcendental.

24 /41
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> Analogy between transcendence in Q[[t]] and irreducibility in Q[¢t]:
® “generic” series are transcendent, “generic” polynomials are irreducible
© sufficient criteria exist (e.g., Eisenstein’s), but none is also necessary
© irreducibility is decidable; what about transcendence?

25/ 41
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A few startin

> Analogy between transcendence in Q[[t]] and irreducibility in Q[¢t]:
® “generic” series are transcendent, “generic” polynomials are irreducible

© sufficient criteria exist (e.g., Eisenstein’s), but none is also necessary
© irreducibility is decidable; what about transcendence?

> The minimal polynomial can have arbitrarily large size (degrees) w.r.t. the
size (order/degree) of the differential equation:

solution of N(t — 1)f'(t) — f(t) = 0, f(0) = 1 satisfies fN =1 —¢

25/ 41
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A few starting remarks on

> Analogy between transcendence in Q[[t]] and irreducibility in Q[¢t]:

© “generic” series are transcendent, “generic” polynomials are irreducible
© sufficient criteria exist (e.g., Eisenstein’s), but none is also necessary
© irreducibility is decidable; what about transcendence?

> The minimal polynomial can have arbitrarily large size (degrees) w.r.t. the
size (order/degree) of the differential equation:

solution of N(t — 1)f'(t) — f(t) = 0, f(0) = 1 satisfies fN =1 —¢

> No characterization for coefficient sequences of algebraic power series
© larger class: D-finite functions <= P-finite sequences

© smaller class: rational functions <= C-finite sequences

. Christol” . . . . .
© diagonals <==== P-finite, almost integer, seq. with geometric growth
conjecture

(NB: in positive characteristic p, algebraic functions <= p-automatic sequences)

25/ 41
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> [Liouville, 1833]: algorithm for (basis of) rational solutions of LDEs
— solves the rational versions (Syat), (Frat) and (Lyat) of (S), (F) and (L)

> [Fuchs, 1866]: characterization of LDEs having only rational solutions
— alternative solution to (Frat)

26 / 41



A bit of history

> [Liouville, 1833]: algorithm for (basis of) rational solutions of LDEs
— solves the rational versions (Srat), (Frat) and (Lyat) of (S), (F) and (L)

> [Fuchs, 1866]: characterization of LDEs having only rational solutions
— alternative solution to (Frat)

> [Schwarz, 1873]: solution to (F) for second order LDEs with 3 singular points
(Gauss hypergeometric equation #(t — 1)y” + ((a+b+1)t—c)y’ 4+ aby = 0)

> [Baldassarri & Dwork 1979]: solution to (F) for arbitrary second order LDEs,
building on works by [Klein, 1878] and [Fuchs, 1878]

> [Singer, 1979]: full solution to (F) building on works by [Jordan, 1880],
[Painlevé, 1887], [Boulanger, 1898] and [Risch, 1969]

> [Katz, 1972, 1982], [André, 2004]: Grothendieck—Katz p-curvature conjecture:
local-global principle for LDEs, (conjectural) arithmetic solution to (F)
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A bit of history _

> [Liouville, 1833]: algorithm for (basis of) rational solutions of LDEs
— solves the rational versions (Srat), (Frat) and (Lyat) of (S), (F) and (L)

> [Fuchs, 1866]: characterization of LDEs having only rational solutions
— alternative solution to (Frat)

> [Schwarz, 1873]: solution to (F) for second order LDEs with 3 singular points
(Gauss hypergeometric equation #(t — 1)y” + ((a+b+1)t—c)y’ 4+ aby = 0)

> [Baldassarri & Dwork 1979]: solution to (F) for arbitrary second order LDEs,
building on works by [Klein, 1878] and [Fuchs, 1878]

> [Singer, 1979]: full solution to (F) building on works by [Jordan, 1880],
[Painlevé, 1887], [Boulanger, 1898] and [Risch, 1969]

> [Katz, 1972, 1982], [André, 2004]: Grothendieck—Katz p-curvature conjecture:
local-global principle for LDEs, (conjectural) arithmetic solution to (F)

> Many tools: geometry (Schwarz, Klein), invariant theory (Fuchs, Gordan),
group theory (Jordan), diff. Galois theory (Vessiot, Singer, Hrushovski),
number theory and algebraic geometry (Grothendieck, Katz, André)
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Guess-and-Prove
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Guess-and-Prove

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.
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Guess-and-Prove

How to Solve It

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

[ generate data]—)[make conjectures)—)[prove them]
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e ¢(i,j,n) = number of n-steps { /', ./, +—, — }-walks in IN? from (0,0) to (i, ])

A

> Question: What is the nature of the generating function
e |

Glryt)= Y glijn)x'yt"?

i,jn=0
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e ¢(i,j,n) = number of n-steps { /', ./, +—, — }-walks in IN? from (0,0) to (i, ])

A

> Question: What is the nature of the generating functlon

G(x,y,t) Zgz], yxlyitn 2
i,j,n=0

> Algebraic reformulation: Solve the “kernel equation”

1 1
G(x,yt) =1+t <xy+x+ x_y + ;)G(x,y,t)

1 11 1
~r(1+ H) G0.3.0) =t (G(x,0.H) ~C(00.1)
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Guess-and-Prove for Ges

e ¢(i,j,n) = number of n-steps { *, ./, -, — }-walks in IN? from (0, 0) to (i, f)

i
> Question: What is the nature of the generating function !
I .

Gloyt)= ) g(i,j,n) X'yt ?
i,j,n=0

Answer: [B., Kauers, 2010] G(x,y, t) is an algebraic function®.

> Approach:
® Generate data: compute G(x,y, t) to precision 2% (= 1.5 billion coeffs!)

@ Guess: conjecture polynomial equations for G(x,0, t) and G(0,y, t)
(degree 24 each, coeffs. of degree (46,56), with 80-bit digits coeffs.)

@ Prove: multivariate resultants of (very big) polynomials (30 pages each)

t Minimal polynomial P(G(x,y,t); x,y,t) = 0 has > 10" terms; ~ 30 Gb (6 DVDs!)
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Guess-and-Prove for Gesse

e ¢(i,j,n) = number of n-steps { *, ./, +—, — }-walks in IN? from (0, 0) to (i, f)

A
> Question: What is the nature of the generating function !

Gy t)= ) g(i,j,n) x'yit" 2
i,j,n=0

Answer: [B., Kauers, 2010] G(x, y, t) is an algebraic function®.

> Approach: — very general and robust!
@ Generate data: compute G(x,y,t) to precision ¢'2%0 (=~ 1.5 billion coeffs!)

@ Guess: conjecture polynomial equations for G(x,0, t) and G(0,y, t)
(degree 24 each, coeffs. of degree (46,56), with 80-bit digits coeffs.)

@ Prove: multivariate resultants of (very big) polynomials (30 pages each)

t Minimal polynomial P(G(x,y,t); x,y,t) = 0 has > 10! terms; ~ 30 Gb (6 DVDs!)
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The unique solution g(t) = 1+2¢t+ 11+ - -+ in Q[[t]] of
(%) 312 (16t —1)g" () +2¢ (128t —7) ¢"(t) +2 (122t — 5) g’ (t) +20g(t) =0
is algebraic.
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An easier,

Theorem [“Gessel excursions are algebraic”]

The unique solution g(t) = 1+2t+ 1142+ --- in Q[[#]] of
(%) 312 (16t —1)g" () +2¢ (128t —7) ¢"(t) +2 (122t — 5) g’ (t) +20g(t) =0
is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Yo" gnt" as a root.

30 / 41
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An easier, but

Theorem [“Gessel excursions are algebraic”]

The unique solution g(t) = 1+2t+ 1142+ --- in Q[[#]] of
(%) 312 (16t —1)g" () +2¢ (128t —7) ¢"(t) +2 (122t — 5) g’ (t) +20g(t) =0
is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Yo" gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.
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An easier, but typi

Theorem [“Gessel excursions are algebraic”]

The unique solution g(t) = 1+2t+ 1142+ --- in Q[[#]] of
(%) 312 (16t —1)g" () +2¢ (128t —7) ¢"(t) +2 (122t — 5) g’ (t) +20g(t) =0
is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Yo" gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3 root r(t) € Q[[t]] of P with (0) = 1.
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An easier, but typical G

Theorem [“Gessel excursions are algebraic”]

The unique solution g(t) =1+ 2¢+ 112+ --- in Q[[#]] of
(%) 312 (16t —1)g" () +2¢ (128t —7) ¢"(t) +2 (122t — 5) g’ (t) +20g(t) =0
is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Yo" gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.
@ Implicit function theorem: 3 root r(t) € Q[[t]] of P with (0) = 1.

@ r(t) =Y,y rat" being algebraic, it is D-finite and satisfies (x) = since
) =142t4+1182 4+, by uniqueness ¢ = r, hence g is algebraic.
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An easier, but typical Guess-and-Prove algebraicity proof

Theorem [“Gessel excursions are algebraic”]

The unique solution g(t) =1+ 2t 411>+ - -+ in Q[[t]] of
(%) 312 (16t —1)g" (t) + 2t (128t —7) ¢"(t) +2 (122t —5) ¢'(t) +20g(t) =0
is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Y., gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod +'% by (structured) linear algebra.
@ Implicit function theorem: 3 root r(t) € Q[[t]] of P with r(0) = 1.

@ r(t) =Y,y rat" being algebraic, it is D-finite and satisfies (x) = since
r(t) =1+2t+11# + - - -, by uniqueness ¢ = r, hence g is algebraic.

> gs:=op(-1, dsolve(deqg, g(t), series, order = 100)):
> P:=gfun:-seriestoalgeq(gs, g(t))[1]:
> gfun:-diffeqtohomdiffeq(gfun:-algeqtodiffeq(P, g(t), g(t)), g(t));
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An easier, but typical Guess-and-Prove algebraicity proof

Theorem [“Gessel excursions are algebraic”]

The unique solution g(t) =1+ 2t 411>+ - -+ in Q[[t]] of
(x) 3> (16t —1)g""(t) +2t (128t —7) ¢"(t) +2 (122t —5) ¢’ (t) +20g(t) = 0
is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Y., gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod +'% by (structured) linear algebra.
@ Implicit function theorem: 3 root r(t) € Q[[t]] of P with r(0) = 1.

@ r(t) =Y rat" being algebraic, it is D-finite and satisfies (x) == since
r(t) =1+2t+11# + - - -, by uniqueness ¢ = r, hence g is algebraic.

> gs:=op(-1, dsolve(deqg, g(t), series, order = 100)):
> P:=gfun:-seriestoalgeq(gs, g(t))[1]:
> gfun:-diffeqtohomdiffeq(gfun:-algeqtodiffeq(P, g(t), g(t)), g(t));

> The approach applies (in principle) to any instance of Stanley’s problem.
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Singer’s algorithm
and
Stanley’s problem

31/ 41
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Singer’s algorithm

Problem (F): Decide if all solutions of a given LDE . of order r are algebraic

e Starting point [Jordan, 1878]: If so, then for some solution y of £, u =y’ /y
has alg. degree at most (491’)72 and satisfies a Riccati equation of order r — 1

Algorithm (& irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
@ Decide if the Riccati equation has an algebraic solution u of degree at
most (49r)" degree bounds + algebraic elimination

@ (Abel’s problem) Given an algebraic u, decide whether y'/y = u has an
algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]
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Singer’s algorithm

Problem (F): Decide if all solutions of a given LDE . of order r are algebraic

e Starting point [Jordan, 1878]: If so, then for some solution y of £, u =y’ /y
has alg. degree at most (491’)72 and satisfies a Riccati equation of order r — 1

Algorithm (& irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
@ Decide if the Riccati equation has an algebraic solution u of degree at
most (49r)" degree bounds + algebraic elimination

@ (Abel’s problem) Given an algebraic u, decide whether y'/y = u has an
algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

> [Singer, 1979]: generalization to any input . — requires LDE factoring

32/41

" AlinBostan (Inria, France)  How to decide if a D-finite power series is algebraic?



Singer’s algorithm

Problem (F): Decide if all solutions of a given LDE . of order r are algebraic

e Starting point [Jordan, 1878]: If so, then for some solution y of £, u =y’ /y
has alg. degree at most (4l9r)r2 and satisfies a Riccati equation of order r — 1

Algorithm (& irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
@ Decide if the Riccati equation has an algebraic solution u of degree at
most (49r)" degree bounds + algebraic elimination

@ (Abel’s problem) Given an algebraic u, decide whether i/ /y = u has an
algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

> [Singer, 1979]: generalization to any input . — requires LDE factoring

> [Singer, 2014; B., Salvy, Singer, 2024]: compute .£218, factor of .# whose
solution space is spanned by alg. solutions of .2 — requires LDE factoring
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Application to Stanley’s

Problem (S): Decide if a D-finite power series f € Q][t]], given by an LDE
Z(f) = 0 and sulfficiently many initial terms, is transcendental.

Algorithm for problem (S) [B., Salvy, Singer, 2024]

® Compute .28
@ Decide if .28 annihilates f

> Benefit: Solves (in principle) problems (S), (F), (L): algebraicity is decidable
> Drawbacks: Step 1 involves impractical bounds & requires LDE factorization

> LDE factorization is effective
[Fabry, 1885], [Markov, 1891], [Grigoriev, 1990], [van Hoeij, 1997]

> ...but possibly extremely costly: complexity (N£)°("),
with £ = bitsize(.¢) and N = (L2 [Grigoriev, 1990]
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A practical method, based on Minimization
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Problem (S): Decide if a D-finite power series f € Q[[t]], given by an LDE
Z(f) = 0 and sufficiently many initial terms, is transcendental.

Key property: If ,?}nin has a log singularity, then f is transcendental.

> Pros and cons: Avoids factorization of ., but requires to compute ,2”]5“1“.
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k k

n 2 2
f(t) =) Aut", where A, =) <n> (n +k> , is transcendental.
n

k=0
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k k

n 2 2
f(t) =) Aut", where A, =) <n> <n +k> , is transcendental.
n

k=0

Proof:
@ Creative telescoping: [Zagier, 1979], [Zeilberger, 1990]
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Ex. (A): Apéry
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@ Conversion from recurrence to differential equation .Z(f) = 0, where
L = (t* —341% + 12)9} + (61> — 153t% +3)? + (74> — 112t +1)d; +t — 5

@ Minimization: [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2024]
compute least-order ,Sf}m“ in Q(t)(9;) such that .,Sf;m“ (f)=0

@ Local solutions of .,S,”J{mn [Frobenius, 1873], [Chudnovsky2, 1987]

{1 15t +O(2), In(t) + (5In(t) + 12)¢ + O(£2), In(£)? + (5In(F)? + 24In(t))t + O(#2) }
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@ Minimization: [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2024]
compute least-order ,Sf}m“ in Q(t)(9;) such that .,Sf;m“ (f)=0

@ Local solutions of .,S,”J{mn [Frobenius, 1873], [Chudnovskyz, 1987]

{1 15t +O(2), In(t) + (5In(t) + 12)¢ + O(£2), In(£)? + (5In(F)? + 24In(t))t + O(#2) }

® Conclusion: f is transcendental®

i f algebraic would imply a full basis of algebraic solutions for f}“i“ [Tannery, 1875].
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The new method: a first

Input: A D-finite f(t) € Q[[t]], given by an LDE .#Z(f) = 0 plus initial terms
Output: T if f(#) is transcendental, A if f(t) is algebraic J

> Principle: (S) is reduced to (F) via minimization
Second algorithm for problem (S) [B., Salvy, Singer, 2024]
@ Compute .f;“i“ [B., Rivoal, Salvy, 2024]

@ Decide if Z}“i“ has only algebraic solutions; if so return A, else
return T. [Singer, 1979]

> Benefit: Solves (in principle) Stanley’s problem (S): algebraicity is decidable
> Drawback: Step 2 can be very costly in practice.
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The new method: a more efficient version

Input: A D-finite f(t) € Q[[t]], given by an LDE .Z(f) = 0 plus initial terms
Output: T if f(#) is transcendental, A if f(t) is algebraic J

Third algorithm for problem (S) [B., Salvy, Singer, 2024]
@ Compute " [B., Rivoal, Salvy, 2024]

Q If X}r‘in has a logarithmic singularity, return T; otherwise return A

> This algorithm is always correct when it returns T

> Conjecturally, under the additional assumption that f is globally bounded®,
it is also always correct® when it returns A [Christol, 1986], [André, 1997]

¢ E.g. if f is given as GF of a binomial sum, or as the diagonal of a rational function

1 5
)

* NB: not true without the global boundedness assumption, e.g. f(t) = 2F; (5 7 6
6
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Ex. (C): a di

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {% — walks of length 7 in IN? from (0,0) to (x,0) } Then
f) =Y, ant" =1+t +4t>+8t3+39t* + 9815 + - - - is transcendental.

¥
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Ex. (O): a difficult quadr

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {L%& — walks of length 7 in IN? from (0,0) to (x,0) } Then
f) =T ant" =1+t+42+81 +39+4 + 985 + - - - is transcendental.

Proof:
@ Discover and certify a differential equation .# for f(t) of order 11 and
degree 73 high-tech Guess-and-Prove
@ If ord(fj?"m) < 10, then degt(fj{“m) <580 apparent singularities
@ Rule out this possibility differential Hermite-Padé approximants
@ Thus, ﬁ}min =Y
@ .Z has a log singularity at t = 0, and so f is transcendental O
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e Problems (S), (F), (L) on algebraicity of solutions of LDEs are decidable

In practice, proving transcendence is easier than proving algebraicity (!)

e LDE minimization is a practical alternative for proving transcendence
© — allows to solve difficult problems from applications

© — also useful in other contexts (effective Siegel-Shidlovskii)

e Guess-and-Prove is a powerful method for proving algebraicity
© — robust: adapts to other functional equations

® — main limitation: output size!

Brute-force / naive algorithms — hopeless on “real-life” applications
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Thanks for your attention!
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