Tamari intervals and blossoming trees

Wenjie Fang, Éric Fusy, Philippe Nadeau LIGM, Université Gustave Eiffel

Melinda Fawver, CC BY-NC 4.0, from iNaturalist

03 April 2025, Séminaire Flajolet, IHP, Paris

Introduction •0000000	Bijection 000	Consequences 0000000	Discussion OO
Binary trees			
Binary trees : n	binary internal nod	es and $n+1$ leaves	

Counted by Catalan numbers: $\operatorname{Cat}_n = \frac{1}{2n+1} \binom{2n+1}{n}$

Rotation (from left to right) :

Introduction	Bijection	Consequences	Discussion
0000000	000	0000000	OO
Tamari lattice			

Left-to-right rotation defines a self-dual lattice (Tamari 1962)

Deep links with subjects in combinatorics, and many generalizations!

Introduction	Bijection	Consequences	Discussion
0000000	000	0000000	OO
The next level:	intervals		

A Tamari interval: [S,T] of binary trees with $S \leq T$

Motivation: conjecturally related to trivariate diagonal coinvariant spaces, also with operads... and nice numbers!

Introduction 000€0000		Bijection 000	Consequences	Discussion OO
	1.00	 		

Many different families

Synchronized intervals: leaves on the same direction

In bijection with ν -Tamari intervals (Préville-Ratelle–Viennot 2017)

Introduction	Bijection	Consequences	Discussion
	000	0000000	00

Many different families (cont.)

New/modern intervals (Chapoton): no shared internal nodes

First defined for enumeration, with algebraic and geometric links

- Infinitely modern intervals: further restriction
- Kreweras intervals: algebraic link

They are often in bijection with families of planar maps!

Introduction	Bijection	Consequences	Discussion
00000000	000	0000000	OO
What is a planar r	nap?		

Planar map: drawing of graphs on a plane without extra crossing

They are rooted, *i.e.*, with a marked corner.

Also many interesting families: triangulation, bipartite, ...

Tamari intervals and planar maps

Intervals	Formula	Planar maps
General	$\frac{2}{n(n+1)}\binom{4n+1}{n-1}$	bridgeless 3-connected triangulation
Synchronized	$\frac{2}{n(n+1)}\binom{3n}{n-1}$	non-separable
New/modern	$\frac{3 \cdot 2^{n-2}}{n(n+1)} \binom{2n-2}{n-1}$	bipartite
Kreweras	$\frac{1}{2n+1}\binom{3n}{n}$	stacked triangulation

Also in bijection with other objects: interval posets, closed flow in forest, fighting fish, λ -term, ...

Many have worked on them: Bernardi, Bonichon, Bousquet-Mélou, Ceballos, Chapoton, Châtel, Chenevière, Combe, Duchi, F., Fusy, Henriet, Humbert, Préville-Ratelle, Pons, Rognerud, Viennot, Zeilberger, ...

But a different equation / bijection for each family...

Introduction	Bijection	Consequences	Discussion
0000000	000		OO
Our results			

(Bicolored) Blossoming tree: an unrooted plane tree such that

- Each edge is half red and half blue.
- Each node has two **buds**, splitting reds and blues.

Many variants, used a lot in enumeration of maps (Poulalhon-Schaeffer 2006)!

Theorem (F.-Fusy-Nadeau 2025)

Tamari intervals of size n are in bijection with bicolored blossoming trees with n edges (thus n + 1 nodes).

Inspired by interval-posets (Châtel-Pons 2015), giving uniform enumeration.

Many enumerative and structural consequences.

Canonical drawing and smooth drawing

Canonical drawing: larger tree on top, smaller tree flipped on bottom

Introduction	Bijection	Consequences	Discussion
00000000	O●O	0000000	00

To blossoming tree: each segment draws two half-edges

Introduction	duction Bijection		Consequences	Discussion		
00000000	000000 0€0		0000000	OO		
~						

Break the middle line into buds, conditions satisfied!

Introduction	Bijection	Consequences	Discussion
00000000	O●O	0000000	00

Introduction	Bijection	Consequences	Discussion
00000000	OOO	0000000	00

Introduction	Bijection	Consequences	Discussion
00000000	OOO	0000000	00

Introduction	Bijection	Consequences	Discussion
00000000	OOO	0000000	00

Introduction	Bijection	Consequences	Discussion
00000000	O●O	0000000	00

... and we get a nice blossoming tree

Introduction	Bijection	Consequences	Discussion
00000000	000		OO
The reverse	direction		

Introduction	Bijection	Consequences	Discussion
00000000	00●	0000000	OO
The reverse	direction		

Introduction	Bijection	Consequences	Discussion
00000000	00●	0000000	OO
The reverse	direction		

Introduction	Bijection	Consequences	Discussion
00000000	00●		OO
The reverse c	lirection		

Introduction	Bijection	Consequences	Discussion
00000000	00●		OO
The reverse d	irection		

Stretch the thread, and we get the trees.

Introduction	Bijection	Consequences	Discussion
00000000	000	•000000	OO
Refined statistics			

- Type of a leaf: 0 for right child, 1 for left child
- Types of a node (pair of leaves): $\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Statistics considered by Chapoton for new intervals.

Types in blossoming tree: presence of blue/red half-edges

Introduction	Bijection	Consequences	Discussion
00000000	000	000000	OO

First enumeration result

Theorem (Bostan–Chyzak–Pilaud 2023+)

The number of Tamari intervals of size n with k pairs of leaves of type $\begin{bmatrix} 0\\0 \end{bmatrix}$ or $\begin{bmatrix} 1\\1 \end{bmatrix}$ is $\frac{2}{n(n+1)} \binom{n+1}{k} \binom{3n}{k-2}.$

Gives the *f*-vector of canonical complex of the Tamari lattice!

```
Synchronized intervals: special case k = n + 1
```

Obtained by solving functional equations.

Blossoming trees: k nodes with adjacent buds among n + 1 nodes. Cyclic lemma suffices!

Introduction	Bijection	Consequences	Discussion
00000000	000		OO
Duality			

Duality on Tamari intervals: just a half-turn.

Duality on blossoming trees: just exchanging colors.

Introduction	Bijection	Consequences	Discussion
00000000	000	0000000	OO

Different families in patterns

Interesting families can be described by forbidden patterns!

Synchronized Modern Infinitely modern Kreweras

Another proof of bijection in the spirit of (Poulalhon-Schaeffer 2006) for

- General intervals ↔ triangulations (Bernardi–Bonichon 2009)
- Synchronized ↔ non-separable maps (F.–Préville-Ratelle 2017)
- Kreweras ↔ ternary trees (Bernardi–Bonichon 2009)

Introduction	Bijection	Consequences	Discussion
00000000	000	○○○○●○○	00

Unified enumeration

Leads to different tree specifications, thus unified enumeration.

Example: modern intervals, blossoming trees avoiding Z, rooted at a bud

Even with refined by node types and intersection of families! Self-dual sub-family: those stable by exchanging colors. Doable!

Introduction	Bijection	Consequences	Discussion
00000000	000	○○○○○●○	00

+~
15
22

Types	General size n	Self-dual size $2k$	Self-dual size $2k + 1$
General	$\frac{2}{n(n+1)}\binom{4n+1}{n-1}$	$\frac{1}{3k+1}\binom{4k}{k}$	$\frac{1}{k+1}\binom{4k+2}{k}$
Synchronized	$\frac{2}{n(n+1)}\binom{3n}{n-1}$	0	$\frac{1}{k+1}\binom{3k+1}{k}$
Modern / new for size-1	$\frac{3\cdot 2^{n-1}}{(n+1)(n+2)}\binom{2n}{n}$	$\frac{2^{k-1}}{k+1}\binom{2k}{k}$	$\frac{2^k}{k+1}\binom{2k}{k}$
Modern and synchronized	$\frac{1}{n+1}\binom{2n}{n}$	0	$\frac{1}{k+1}\binom{2k}{k}$
Inf. modern / Kreweras	$\frac{1}{2n+1}\binom{3n}{n}$	$\frac{1}{2k+1}\binom{3k}{k}$	$\frac{1}{k+1}\binom{3k+1}{k}$

Direct combinatorial explanation for many of them, maybe all?

Introduction	Bijection	Consequences	Discussion
00000000	000	000000●	OO
Random gener	ration		

- Bijection coded in Sagemath (available on Github)
- Conversion with known structures in Sagemath
- Random generation for blossoming trees in linear time

Random modern intervals of size 100000 in Dyck paths

Introduction	Bijection	Consequences	Discussion
00000000	000	0000000	•O
Discussion			

- Quite versatile: solves another family equi-enumerous as Kreweras
- Mysterious involution: reflection on blossoming trees
 - Exchanges infinitely modern and Kreweras
 - What are the images of modern intervals?
- How to explain Reiner's observation: self-dual intervals = q-analogue of # general intervals with q = -1? Works also for synchronized!
- *m*-Tamari intervals (canopy (10^m)ⁿ) have nice formula (Bousquet-Mélou–Fusy–Préville-Ratelle 2011):

$$\frac{m+1}{n(mn+1)} \binom{n(m+1)^2 + m}{n-1}.$$

But our bijection breaks the order in canopy, so hard to get it?

Introduction	Bijection	Consequences	Discussion
00000000	000	0000000	O
Large scale structi	ure?		

Maybe related to a recent work of Chapuy on Tamari intervals under the form of Dyck paths?

Introduction	Bijection	Consequences	Discussion
00000000	000	0000000	O
Large scale stru	ucture?		

Maybe related to a recent work of Chapuy on Tamari intervals under the form of Dyck paths?

Thank you for listening!

3-connected triangulation: all faces of degree 3, no loop nor multiple edge.

Each bud connects to the node after two edges, unless blocked by a bud.

3-connected triangulation: all faces of degree 3, no loop nor multiple edge.

Each bud connects to the node after two edges, unless blocked by a bud.

3-connected triangulation: all faces of degree 3, no loop nor multiple edge.

Two nodes left with no match, with two singly-matched paths.

3-connected triangulation: all faces of degree 3, no loop nor multiple edge.

Put two extra nodes to get a triangulation. > Back <