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Reminder on Automata theory

Automata theory is interested in

o languages, i.e. formal sets of words over a given alphabet ¥.
(a+b) =={wi...wp, : neN,w; € {a,b}}
{a"b" : n e N*}

o described by finite structures
automata, grammars, counter machines

o and the complexity of problems related to them
emptyness, inclusion, universality, . ...



Regular languages

Regular languages are the simplest languages in the Chomsky
hierarchy. They are exactly the languages recognized by :

o Regular expressions :
Y*aY*, (a+ b)*b, T*ax 1 ...
b a, b

o (Deterministic) finite automata

Accepting run of an automaton : labeled path from the initial
state to a final state



Context-free languages

Context-free languages are the second-level class of languages in
the Chomsky hierarchy. They are exactly the languages recognized
by :

o Context-free grammars

S —aSb|Clcc
S — aSb | e, S—[S]S e,

C—cClc

o Non-deterministic pushdown automata

Regular languages C Context-free languages

{a"b" | n € N} is context-free but not regular



Unambiguous context-free grammar
S [S]S|e
Derivation

S = [SIs=[l 15Is=[l5]s=[ls]s1s=[lI[5]S = (0115 =[]



Unambiguous context-free grammar
S [S]S|e
Derivation

S = [S1s=[[ 1515=[[15]5=[[I[5]5]5=[l][5]S = ({1} = [{I[I]
S= 8IS = [5]= ([ 15] = [I°] = [I[s]s] = [0S = [0

Derivation tree

S
7/ \
[/s ]\5
/I N\ |
[©] S £
| RN
c [S]s
[

Unambiguous context-free grammar
Every word in its language has exactly one derivation tree.



Unambiguous context-free languages

Relevant intermediate model between deterministic and
non-deterministic context-free languages.

Unambiguous Context-free Languages C Context-free Languages

{a"b™cP | n= m or m = p} is inherently ambiguous



Unambiguous context-free languages

Relevant intermediate model between deterministic and
non-deterministic context-free languages.

Unambiguous Context-free Languages C Context-free Languages
{a"b™cP | n= m or m = p} is inherently ambiguous

Finding inherently ambiguous languages is interesting. However:

o deciding whether a grammar is ambiguous is undecidable
[Chomsky-Schiitzenberger'63]

o deciding whether a context-free language is inherently
ambiguous is undecidable [Ginsburg-Ullian'66, Greibach'68]



Combinatorics of formal languages: generating functions

Generating function
Let L be a language, ¢, the number of words in L of length n:

L(x) = i:.ofnx"
n=0
Example
(a+b) =l =2"=L(x)=),2"x" = L
Example
b*a(a+b)" = L(x) = X2n20(2" = 1)X" = g(=2m)
Example

Well bracketed words — L(x) = L (3n)x2n = =i

n>0 n+1\ n 2x2



Link between automata and generating functions

unambiguous

regular c
languages = context-free languages
a b
b S — aSB|e
o B - B bS
a
q0(x) = xqo(x) + xq1(x) 5(x) = x5(x)B(x) +
q1(x) =1+ xqu(x) + xqo(x) B(x) = xB(x) + XS(X)
X
qo(x) = T 5% x2S(x)? = (1 - x)S(x) +1—-x=0
rational ?Deries algebraic series
) < PELGO.x) 0

L(x) = )



Link between two hierarchies

unambiguous

pushdown automata L(z) = >_£,2" algebraic
£n # words
. of length n
unambiguous rational
finite automata
Automata Generating functions

Two remarkable applications :
o analytic proofs of inherent ambiguity [Flajolet 87]

o polynomial algorithm for the inclusion problem for
unambiguous NFA'’s [Stearns & Hunt 85]



Analytic criteria for inherent ambiguity

Flajolet’s idea: if the GF of a context-free language is not
algebraic, then it is an inherently ambiguous context-free language.

Proposition [Useful criteria, Flajolet '87]:
Let L(z) = > ,cnfnz" a series.
o If L(z) has infinitely many singularities, then L(z) is not
algebraic.
o If £,, does not satisfy a linear recurrence with polynomial
coefficients in n, then L(z) is not algebraic.
o If by ~pyoo ¥B™", with r e {—1, -2, -3, ...} or r £Q, or
~ x [(r+ 1) transcendental, then L(z) is not algebraic.



Analytic criteria for inherent ambiguity

Theorem [Flajolet '87]
Q3 ={we{a b, c}* :|w|,# |w|por|w|, # |w|c} is inherently

ambiguous.

Analytic proof:

o Suppose that Q3(x) is algebraic
o Let /= (a+b+c)*\Q3

o Then I(x) = — Q3(x) would be algebraic by closure
properties

o But I ={we{ab,c} :|wly=|w|p=|w|}

3n ) ~ (3n)! 33n£

~ (n1)3 e S orn

i) = (

n,n,n

If {n ~nsoo 780", with r € {1, -2, —-3,...} then L(z) is
not algebraic.



Flajolet’s analytic method

Advantages :

o is very powerful : P. Flajolet (re)proved the inherent
ambiguity of 15 languages, some of which were conjectures, in
only one article

Inconvenients :

o does not work on too simple languages, whose series are
rational; for instance for a”"b™cP with n = m or m = p.
— New methods needed [Makarov 21, Koechlin 21]



Link between two hierarchies

unambiguous

pushdown automata L(z) = >_£,2" algebraic
£n # words
. of length n
unambiguous rational
finite automata
Automata Generating functions

Two remarkable applications :
o analytic proofs of inherent ambiguity [Flajolet 87]

o polynomial algorithm for the inclusion problem for
unambiguous NFA'’s [Stearns & Hunt 85]



Strict Inclusion problem for unambiguous automata
Problem: Given A and 5 two unambiguous NFA, with
L(A) C L(B), is the inclusion strict?

Ly Lc
La = (7

Bad idea: compute an automaton recognizing L¢, via
determinizing A and B



Strict Inclusion problem for unambiguous automata

Problem: Given A and 5 two unambiguous NFA, with
L(A) C L(B), is the inclusion strict?

Ly Lc
La = (7

Stearns and Hunt’s idea:
o C(x):=> cpx" = B(x) — A(x) is rational
o The coefficients of C(x) satisfy a linear recurrence:

Vn>r,ch=aichp 1+ +ach

o the order r is at most |Q4| + | Q3|

If L(A) € L(B), there exists a small witness w € L(B) \ L(A) with
lw| < |Qal + Qs



Inclusion problem for unambiguous automata

Problem: Given A and B two unambiguous NFA, L(.A) C L(B)?
Theorem [Stearns and Hunt 85]: The inclusion problem for
unambiguous NFA is polynomial.

o L(A) Z L(B) & L(A)N L(B) € L(A)

o Compute coefficients up to |Q4||Qz| + |Q.4| (dynamic prog.)



Extension to D-finite

??

pushdown aut.
unambiguous

automata
(deterministic)

Automata model

Goals of the talk

series

L(z)=>¢,2"
— =

£n number of words
of length n

D-finite
series

algebraic
series

rational
series

Generating functions

o suitable class of languages and unambiguous automata models

o proofs of inherent ambiguity, algorithmic consequences



D-finite series [Stanley 80]

D-finite Rational: P(x)f(x) = Q(x)
algebraic Algebraic: P(x,f(x)) =0

D-finite: P(x,0x)-f = 0.
rational

Generating functions

Definition: A series f(x) =), anx" is D-finite (or holonomic) if
it satisfies a linear differential equation:

Pr(x)F(x) + ...+ Po(x)f(x) = 0 avec Pj(x) € Q[x]

Alternative definition: the coefficients a, satisfy a linear
recurrence py(n)antr + ...+ po(n)a, =0



D-finite series [Stanley 80]

Example: F(x) = e*:= 3" X is D-finite but is not algebraic

o differential equation: F/ — F =0

o recurrence relation: (n+ 1)fp41 —f, =0



D-finite series [Stanley 80]

Example: F(x) = X := 3 X1 is D-finite but is not algebraic

n!

o differential equation: F/ — F =0

o recurrence relation: (n+ 1)fp41 —f, =0

Example: | ={w € {a,b,c}* : |w|, = |w|p = |w|c}

3n)_(3n)! 33n\/§

~ (n!)3 T orn

1) = (

n,n,n

I(x) is D-finite but is not algebraic.



Multivariate D-finite series [Lipshitz 88,89]

Multivariate D-finite series: satisfy a system of linear partial
differential equations.

o Multivariate rational and algebraic series are D-finite.

1 1—+/1—4xy
1—xy’ 2xy

o Multivariate D-finite series are closed under :
o arithmetic operations +, x, —
1 1-y/1-4xy

1—xy 2xy
o specialization to 1:
f(xi,...,xn) D-finite = f(x,1,...,1) D-finite
o Diagonals
o Hadamard's product ® (component-wise product)
1o 1-v1-4xy
1—xy 2xy




Fx,y) =Y a(i,)x"y?,  g(x,y) = bir, i)xy"
(i17i2) (i17i2)

Fogxy) =Y a(ir,i)b(ir, 2)x"y?,
(i1,i2)



Previous attempts on automata side

77

unamb.
pushdown

finite

Automata model

Add linear constraints to the support of D-finite series :

o ldea already hinted in [Lipshitz 88]

o Formalised by [Bertoni, Massazza, Sabadini '92], [Massazza
'93], [Castiglione, Massazza '17]

o Family of languages : RCM et LCL, built purposely to
have D-finite series

{a"b"c"} = a*b*c" N[#a = #b N #b = #(]

o No associated automata model
— conjectured link between RCM and deterministic
counter machines (RBCM)|Castiglione, Massazza '17]



Parikh automata (PA) [Kiaedtke, Rues '03]

Motivation: {a"b"c"} is simple but not context-free

@b%é

(A) =a*bTct

o Run is labeled by a word

o Word is recognised if the run ends in final state g3



Parikh automata (PA) [Kiaedtke, Rues '03]

Motivation: {a"b"c"} is simple but not context-free

L(A)=a*bTct

o Run is labeled by a word and a vector

o Word is recognised if the run ends in final state g3



Parikh automata (PA) [Kiaedtke, Rues '03]

Motivation: {a"b"c"} is simple but not context-free

L(A)={a"b"c" : ne N*}

o Run is labeled by a word and a vector

o Word is recognised if the run ends in final state g3 and if its
vector is in C



Parikh automata (PA) [Kiaedtke, Rues '03]

Motivation: {a"b"c"} is simple but not context-free

L(A)={a"b"c" : ne N*}

o Run is labeled by a word and a vector

o Word is recognised if the run ends in final state g3 and if its
vector is in C

o Can be extended with a stack.



Semilinear sets in N9

The accepting set of vectors C is a semilinear set
A\ of linear inequalities or equalities modulo constants

{(Bn,6n+1) : ne N} ={(x1,x) : x1 =0[3] A xo =2x; + 1}

Equivalent definitions (all very useful!)
o Finite union of linear sets ¢+ P* where P = {p1,...,p/}
(0,1) +{(3,6)}"
o Presburger arithmetic [Ginsburg and Spanier, 66]
O(x1,x2) =3I, x1 —3x=0 A 14+2x3—x =0
o (Unambiguous) rational subsets of (N, +) [Eilenberg and
Schiitzenberger, Ito, 69]

©)
®



(Weakly) unambiguous Parikh automata

Weak Unambiguity: at most one accepting run (final state +
semilinear constraint)

_> (@) @ C ={(n,n) : neN}

L(A) = {words with an a in the middle} = {..., abbabab, ...}

# unambigous Parikh automata from [Cadilhac, Finkel, McKenzie 13]



Relevant automata model

Theorem [Bostan, Carayol, K., Nicaud '20] : The class of weakly
unambiguous Parikh languages coincide with :

o RCM of [Castiglione, Massazza '17]

o unambiguous two-way RBCM [Ibarra '78]
=> stronger version of [Castiglione, Massazza '17]'s conjecture

Theorem [Bostan, Carayol, K., Nicaud '20] : The class of weakly
unambiguous pushdown Parikh languages coincide with :

o LCL adapted from [Massazza '93]
o unambiguous one-way RBCM with a stack [Ibarra '78]



Extension

weakly unambiguous

pushdown Parikh automata D-finite
unambiguous i
pushdown automata L(z) = > /£n2" algebraic
£, #words
. of length n
au?g:q:gta rational
Automata model Generating functions

Theorem [Bostan, Carayol, K., Nicaud '20] : The generating function
of a language recognized by a weakly unambiguous pushdown
Parikh automaton is D-finite.



D-finiteness of the generating function

Theorem: the series of a weakly-unambiguous PA is D-finite

Counting the number of runs by vectors

A vV, . .
A, Y155 Yd) = Z anvi,vg X"V y,e is rational

nvi,...,vq

ab(d 2 ()
()
O——®

QO(X,YL)Q) = 2XY12QO(X,}/17}/2) + qu(Xa)/17}/2)
qi(x, y1,y2) =2xy2 +1



D-finiteness of the generating function

Theorem: the series of a weakly-unambiguous PA is D-finite

Support series of the semilinear constraint C

Clyr, .-, yd) = Z .. yy? s rational
(vl,.A.,vd)EC

— (Unambiguous) rational subsets of (N9, +)

)
@

Y2

C(}/17}/2) = m



D-finiteness of the generating function

Theorem: the series of a weakly-unambiguous PA is D-finite

Counting the number of runs by vectors

AX Y1,y Yd) = Z Ay, vy Xty is rational
nvi,...,Vyq
Support series of the semilinear constraint C
Clyr, .-, yd) = Z .. yy? s rational

(Viyeesva)EC

Filtering out non-accepting runs

_ Cln, ...,
(yl—xyd) [y1—>17"'ayd—>1]

A(Xv}/Ia"'?yd)@ 1—



D-finiteness of the generating function

Theorem: the series of a weakly-unambiguous PA is D-finite

Counting the number of runs by vectors

AX Y1,y Yd) = Z Ay, vy Xty is rational
nvi,...,Vyq
Support series of the semilinear constraint C
Clyr, .-, yd) = Z .. yy? s rational

(v1,..,va)€C
Filtering out non-accepting runs

_ Cln, ...,
(yl—xyd) [y1—>17"'ayd—>1]

A(Xv}/Ia"'?yd)@ 1—

weak-unambiguity = counting accepting runs = counting words [



Extension

weakly unambiguous

pushdown Parikh automata D-finite
unambiguous .
pushdown automata L(z) = >_(n2" algebraic
£, #words
Eoi of length n
autlg%:ta rational
Automata model Generating functions

Two remarkable applications :
o analytic proofs of inherent ambiguity for PA

o complexities bound for an algorithm for the inclusion problem
for wuPA



Inherent ambiguity using non-holonomy

If the series of a language accepted by a PA is not D-finite, then it
is inherently weakly-ambiguous for PA.

Theorem [Stanley 1980]: Let f(x) = > apx" :
o If f has an infinite number of singularities, f is not D-finite.

o If a, does not satisfy a linear recurrence with polynomial
coefficients, then f is not D-finite.



Inherent ambiguity using non-holonomy

If the series of a language accepted by a PA is not D-finite, then it
is inherently weakly-ambiguous for PA.

Theorem [Stanley 1980]: Let f(x) = > apx" :
o If f has an infinite number of singularities, f is not D-finite.

o If a, does not satisfy a linear recurrence with polynomial
coefficients, then f is not D-finite.

Example: the following language is recognized by a PA
D={amba™b...a"b: ke N* n =1and 3j < k,nj;1 # 2n;}
Observe that:

o w = aba®ba*balb is a typical word that is not in D

o D(x) = % — Dkl X1tk
o D(x) has infinitely many singularities: it is not D-finite

Hence D is inherently weakly-ambiguous for PA.



Limit of the method

Proposition: the following language is recognized by a PA
Leven = {a”lb. .a bk e N*HI € [1 k]q npji_1 = n2,-}
o actually it is an unambiguous context-free language

o its generating function is even rational!

o it is inherently weakly-ambiguous [Bostan, Carayol, K., Nicaud '20]

Non-D-finiteness is only a sufficient condition for inherent
weak-unambiguity for PA

Proposition: inherent weak-unambiguity is undecidable.



Algorithmic application: strict inclusion problem for wuPA

Lg Lc
La

Pose Lo :=Lp\ Ly
idea: replace Lo = () by C(x) 20
o "Compute” A(x) and B(x) from A and 53
— possible by weak-unambiguity

o Differential equation satisfied by C(x) = B(x) — A(x)
o Linear recurrence satisfied by ¢, = b, — a,
_pr(n)cn+r = Prfl(")querl +...+ PO(”)Cn

o Bound B such that ¢, = 0 for n < B implies Vn,c, =0
C(x) = x'® satisfies xC’(x) — 100C(x) = 0 and (n — 100)c, = 0



Algorithmic application: inclusion problem for wuPA

Proposition [Bostan, Carayol, K., Nicaud '20] :
If L(A) C L(B), then there exists a word w € L(53)\L(.A) such that

2
’W‘ S 22(’)(d log(dM))

with d = d4 + dg, M depends on A and 5.

Theorem [Bostan, Carayol, K., Nicaud '20] :
The inclusion problem

?
L(A) € L(B)
is in 2 — EXPTIME for weakly-unambiguous Parikh automata.



Let us be more precise

pushdown PA D-finite
weakly-unambiguous series
pushdown aut. n algebraic
unambiguous L(z) = >tz series
_—
automata rational
(deterministic) series
Automata model Generating function
2
1—2x+4225x = 1+9X+49X2+. .. [Salomaa&SoittoIa 78, Bousquet-Mélou 08]

(1—25x)(625x2+14x+1)

G(X) = 1—{—2X+11X2—|—. .. [Bostan & Kauers 10, Drmota & Banderier 13]



Let us be more precise

pushdown PA N-D-finite
weakly-unambiguous series 77
pushdown aut. N-algebraic
unambiguous L(z) = > 4p2" series
—
automata N-rational
(deterministic) series
Automata model Generating function
2
1—2x+4225x = 1+9X+49X2+. .. [Salomaa&SoittoIa 78, Bousquet-Mélou 08]

(1—25x)(625x2+14x+1)

G(X) = 1—{—2X+11X2—|—. .. [Bostan & Kauers 10, Drmota & Banderier 13]



Let us be more precise

pushdown PA
weakly-unambiguous

pushdown aut.
unambiguous

automata
(deterministic)

Automata model

L(z)=>¢,z"
—

A(N-algebraic)
series

N-algebraic
series

N-rational
series

Generating function

Theorem [Koechlin '21]: A series f(x) is the generating series of
a weakly-unambiguous (pushdown) Parikh automaton if and only if
it is the diagonal of an N-rational (N-algebraic) series



Diagonals of N-rational functions

o A multivariate series

i i
Alxty ..oy Xk) = g Cip i X - X
15000k

is N-rational if it counts the number of accepting runs of a
finite automaton over the alphabet ¥ = {ay,..., ax}, where
each variable counts the number of occurrences of each letter
in the run.

o The diagonal of A(xi,...,xx) is the univariate function
defined by

AAX) = L X"

— Diagonals of N-rational series ~ generating functions of
regular languages with constraint "same number of
occurrences of each letter”



wuPA implies diagonal of N-rational functions




wuPA implies diagonal of N-rational functions




wuPA implies diagonal of N-rational functions

o (3) b
-G DT O B

é‘i:(07"'7071707".70)

(3

Oxy,m0) = (11 = 209) —> (Y1, 4) =

DAl =2, Vioy

"Replace 1 by ... +y; + ...
and zo by ...+ 3y; +...7



wuPA implies diagonal of N-rational functions

¢/(y17 cee ’yr)



wuPA implies diagonal of N-rational functions




wuPA implies diagonal of N-rational functions

0;, €

@/_\GD 5y (85 €)
oo

(,b/(yl,”-,yr) - q)(ylv--'ay'r';zla"'azr‘)
=(p=21N... Ny = 2)



wuPA implies diagonal of N-rational functions

0;, €

m 5i7f+€i*5j
_—
;i

(rb/(yla“'ayr) - q)(y17---;y'r')
—=. =)



wuPA implies diagonal of N-rational functions

(I)(ylu--wyr) = (y1 =Y =...=Yr :2/7-)



wuPA implies diagonal of N-rational functions

L(z) = AA(ys, - -, yr)

wi,j - 61 N 61'71(522 e 6j*16j+1 .



Diagonals of N-rational functions

Irrational tiles [Garrabrant and Pak]

o set of tiles with height 1, with possible irrational length

KR
B
o overlapping compatibility D D) I:B
v X

[Garrabrant and Pak] L(x) = )", £,x" is the diagonal of an N-rational
function if and only if there is a set of tiles and some € > 0 such
that £, = number of tilings of the rectangle of length n 4 ¢.

[5995 5555

n+e




Diagonals of N-rational functions

where 1, a1, ..., a, independent over Q

A




Conclusion

pushdown PA
weakly-unambiguous

pushdown aut.
unambiguous

automata
(deterministic)

Automata model

L(z)=>¢,z"
—

diagonal of
N-algebraic series

N-algebraic
series

N-rational
series

Generating functions

o more precise but less useful? Not enough closure properties

o diagonals of N-rational series are not well understood
Conjecture: Catalan’s numbers are not diagonal of N-rational
series [Garrabrant and Pak '14]



Conclusion THANK YOU !

pushdown PA diagonal of
weakly-unambiguous N-algebraic series
pushdown aut. N-algebraic
unambiguous L(z) = > ly2" series

automata N-rational
(deterministic) series

Automata model Generating functions

o more precise but less useful? Not enough closure properties

o diagonals of N-rational series are not well understood
Conjecture: Catalan’s numbers are not diagonal of N-rational
series [Garrabrant and Pak '14]



Bonus Analytic criteria for inherent ambiguity V2

Proposition
Qs ={we{abcd}* : =(|ws=|w|p=|w|c =|wlqg)} is
inherently ambiguous.
Analytic proof:
o Suppose that Q4(x) is algebraic
oletl=(a+b+c+d)\Q
o But I ={we{a b, c,d}* : |wl,=|wlp=|w|c=|w|q}

[X4”]I(x):< 4n )_ (4n)! V2 256"

n,n,n,n)  (n)* e 532 g3z

But I'(—3/2+ 1)2 57 = —g is transcendent!



Bonus Analytic criteria for inherent ambiguity V2

Proposition
Qs ={we{abcd}* : =(|ws=|w|p=|w|c =|wlqg)} is
inherently ambiguous.
Analytic proof:
o Suppose that Q4(x) is algebraic
oletl=(a+b+c+d)\Q
o But I ={we{a b, c,d}* : |wl,=|wlp=|w|c=|w|q}

[X4”]I(x):< 4n )_ (4n)! V2 256"

n,n,n,n)  (n)* e 532 g3z

But I'(—3/2+ 1)2 57 = —g is transcendent!

o Lazy proof: Q4N (a+ b+ (cd))* ~ Q3.



More specific criteria on series (2)

Motivation: there exist many inherently ambiguous languages
with very simple (rational !) series.

The language {a"b™cP with n % m or m # p} is inherently
ambiguous [Makarov 21, Koechlin 21]

1 1 a+b+c—ab—ac—bc
(1—a)(1—b)(1—c) l1—abc = (1—a)(1—b)(1—c)(1—abc)

The language
Leven ={a™b...a" b : ke N* 3i € [1, k]|, npi—1 = np;}

is inherently weakly-ambiguous for PA.
— proof based on generating functions ?



