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Reminder on Automata theory

Automata theory is interested in

◦ languages, i.e. formal sets of words over a given alphabet Σ.

(a+ b)∗ := {w1 . . .wn : n ∈ N,wi ∈ {a, b}}
{anbn : n ∈ N∗}

◦ described by finite structures

automata, grammars, counter machines

◦ and the complexity of problems related to them

emptyness, inclusion, universality, . . . .
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Regular languages

Regular languages are the simplest languages in the Chomsky
hierarchy. They are exactly the languages recognized by :

◦ Regular expressions :
Σ∗aΣ∗, (a+ b)∗b, Σ∗aΣr−1, . . .

◦ (Deterministic) finite automata 0 1

b a, b

a

Accepting run of an automaton : labeled path from the initial
state to a final state
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Context-free languages

Context-free languages are the second-level class of languages in
the Chomsky hierarchy. They are exactly the languages recognized
by :

◦ Context-free grammars

S → aSb | ε, S → [S ]S | ε,

{
S → aSb |C | cc
C → cC | c

◦ Non-deterministic pushdown automata

Regular languages ⊊ Context-free languages

{anbn | n ∈ N} is context-free but not regular
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Unambiguous context-free grammar

S → [S ]S | ε

Derivation

S ⇒ [S ]S⇒ [[S ]S ]S⇒ [[]S ]S⇒ [[][S ]S ]S⇒ [[][]S ]S⇒ [[][]]S⇒ [[][]]

S ⇒ [S ]S ⇒ [S ] ⇒ [[S ]S ] ⇒ [[]S ] ⇒ [[][S ]S ] ⇒ [[][S ]] ⇒ [[][]]

Derivation tree

S

[ S ] S

[ S ] S ε

ε [ S ] S

εε

Unambiguous context-free grammar
Every word in its language has exactly one derivation tree.
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Unambiguous context-free languages

Relevant intermediate model between deterministic and
non-deterministic context-free languages.

Unambiguous Context-free Languages ⊊ Context-free Languages

{anbmcp | n = m or m = p} is inherently ambiguous

Finding inherently ambiguous languages is interesting. However:

◦ deciding whether a grammar is ambiguous is undecidable
[Chomsky-Schützenberger’63]

◦ deciding whether a context-free language is inherently
ambiguous is undecidable [Ginsburg-Ullian’66, Greibach’68]
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Combinatorics of formal languages: generating functions

Generating function
Let L be a language, ℓn the number of words in L of length n:

L(x) =
+∞∑
n=0

ℓnx
n

Example

(a+ b)∗ → ℓn = 2n → L(x) =
∑

n 2
nxn = 1

1−2x

Example

b∗a(a+ b)∗ → L(x) =
∑

n≥0(2
n − 1)xn = x

(1−x)(1−2x)

Example

Well bracketed words → L(x) =
∑

n≥0
1

n+1

(2n
n

)
x2n = 1−

√
1−4x2

2x2
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Link between automata and generating functions

regular
languages ⊆

0 1

a b

a

b

{
q0(x) = xq0(x) + xq1(x)

q1(x) = 1 + xq1(x) + xq0(x)

q0(x) =
x

1− 2x

⊆
rational series

L(x) =
P(x)

Q(x)

unambiguous
context-free languages

{
S → aSB | ε
B → cB | bS

{
S(x) = xS(x)B(x) + 1

B(x) = xB(x) + xS(x)

x2S(x)2 − (1− x)S(x) + 1− x = 0

algebraic series
P(L(x), x) = 0
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Link between two hierarchies

unambiguous
pushdown automata

unambiguous
finite automata

Automata

L(z) =
∑

ℓnz
n

ℓn # words
of length n

Generating functions

algebraic

rational

Two remarkable applications :

◦ analytic proofs of inherent ambiguity [Flajolet 87]

◦ polynomial algorithm for the inclusion problem for
unambiguous NFA’s [Stearns & Hunt 85]
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Analytic criteria for inherent ambiguity

Flajolet’s idea: if the GF of a context-free language is not
algebraic, then it is an inherently ambiguous context-free language.

Proposition [Useful criteria, Flajolet ’87]:
Let L(z) =

∑
n∈N ℓnz

n a series.

◦ If L(z) has infinitely many singularities, then L(z) is not
algebraic.

◦ If ℓn does not satisfy a linear recurrence with polynomial
coefficients in n, then L(z) is not algebraic.

◦ If ℓn ∼n→∞ γβnnr , with r ∈ {−1,−2,−3, . . .} or r ̸∈ Q, or
γ × Γ(r + 1) transcendental, then L(z) is not algebraic.
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Analytic criteria for inherent ambiguity

Theorem [Flajolet ’87]
Ω3 = {w ∈ {a, b, c}∗ : |w |a ̸= |w |b or |w |b ̸= |w |c} is inherently
ambiguous.

Analytic proof:

◦ Suppose that Ω3(x) is algebraic

◦ Let I = (a+ b + c)∗ \ Ω3

◦ Then I (x) = 1
1−3x − Ω3(x) would be algebraic by closure

properties

◦ But I = {w ∈ {a, b, c}∗ : |w |a = |w |b = |w |c}

[x3n]I (x) =

(
3n

n, n, n

)
=

(3n)!

(n!)3
∼n→∞ 33n

√
3

2πn

If ℓn ∼n→∞ γβnnr , with r ∈ {−1,−2,−3, . . .} then L(z) is
not algebraic.
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Flajolet’s analytic method

Advantages :

◦ is very powerful : P. Flajolet (re)proved the inherent
ambiguity of 15 languages, some of which were conjectures, in
only one article

Inconvenients :

◦ does not work on too simple languages, whose series are
rational; for instance for anbmcp with n = m or m = p.
→ New methods needed [Makarov 21, Koechlin 21]
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Link between two hierarchies

unambiguous
pushdown automata

unambiguous
finite automata

Automata

L(z) =
∑

ℓnz
n

ℓn # words
of length n

Generating functions
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rational
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Strict Inclusion problem for unambiguous automata

Problem: Given A and B two unambiguous NFA, with
L(A) ⊆ L(B), is the inclusion strict?

LB
LA

LC
= ∅?

Bad idea: compute an automaton recognizing LC , via
determinizing A and B
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Strict Inclusion problem for unambiguous automata

Problem: Given A and B two unambiguous NFA, with
L(A) ⊆ L(B), is the inclusion strict?

LB
LA

LC
= ∅?

Stearns and Hunt’s idea:

◦ C (x) :=
∑

cnx
n = B(x)− A(x) is rational

◦ The coefficients of C (x) satisfy a linear recurrence:

∀n ≥ r , cn = α1cn−1 + · · ·+ αrcn−r

◦ the order r is at most |QA|+ |QB|
If L(A) ⊊ L(B), there exists a small witness w ∈ L(B) \ L(A) with

|w | ≤ |QA|+ |QB|
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Inclusion problem for unambiguous automata

Problem: Given A and B two unambiguous NFA, L(A) ⊆ L(B)?

Theorem [Stearns and Hunt 85]: The inclusion problem for
unambiguous NFA is polynomial.

◦ L(A) ̸⊆ L(B) ⇔ L(A) ∩ L(B) ⊊ L(A)

◦ Compute coefficients up to |QA||QB|+ |QA| (dynamic prog.)
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Extension to D-finite series

??

pushdown aut.
unambiguous

automata
(deterministic)

Automata model

L(z) =
∑

ℓnz
n

ℓn number of words
of length n

D-finite
series

Generating functions

algebraic
series

rational
series

Goals of the talk

◦ suitable class of languages and unambiguous automata models

◦ proofs of inherent ambiguity, algorithmic consequences
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D-finite series [Stanley 80]

D-finite

Generating functions

algebraic

rational

Rational: P(x)f (x) = Q(x)
Algebraic: P(x , f (x)) = 0
D-finite: P(x , ∂x) · f = 0.

Definition: A series f (x) =
∑

n anx
n is D-finite (or holonomic) if

it satisfies a linear differential equation:

Pk(x)f
(k)(x) + . . .+ P0(x)f (x) = 0 avec Pi (x) ∈ Q[x ]

Alternative definition: the coefficients an satisfy a linear
recurrence pr (n)an+r + . . .+ p0(n)an = 0
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D-finite series [Stanley 80]

Example: F (x) = ex :=
∑ xn

n! is D-finite but is not algebraic

◦ differential equation: F ′ − F = 0

◦ recurrence relation: (n + 1)fn+1 − fn = 0

Example: I = {w ∈ {a, b, c}∗ : |w |a = |w |b = |w |c}

[x3n]I (x) =

(
3n

n, n, n

)
=

(3n)!

(n!)3
∼n→∞ 33n

√
3

2πn

I (x) is D-finite but is not algebraic.
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Multivariate D-finite series [Lipshitz 88,89]

Multivariate D-finite series: satisfy a system of linear partial
differential equations.

◦ Multivariate rational and algebraic series are D-finite.
1

1−xy ,
1−

√
1−4xy
2xy

◦ Multivariate D-finite series are closed under :

◦ arithmetic operations +,×,−
1

1−xy − 1−
√
1−4xy
2xy

◦ specialization to 1:
f (x1, . . . , xn) D-finite ⇒ f (x , 1, . . . , 1) D-finite

◦ Diagonals
◦ Hadamard’s product ⊙ (component-wise product)

1
1−xy ⊙ 1−

√
1−4xy
2xy
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f (x , y) =
∑
(i1,i2)

a(i1, i2)x
i1y i2 , g(x , y) =

∑
(i1,i2)

b(i1, i2)x
i1y i2

f ⊙ g(x , y) =
∑
(i1,i2)

a(i1, i2)b(i1, i2)x
i1y i2 ,
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Previous attempts on automata side

??

unamb.
pushdown

finite

Automata model

Add linear constraints to the support of D-finite series :

◦ Idea already hinted in [Lipshitz 88]

◦ Formalised by [Bertoni, Massazza, Sabadini ’92], [Massazza

’93], [Castiglione, Massazza ’17]

◦ Family of languages : RCM et LCL, built purposely to
have D-finite series

{anbncn} = a∗b∗c∗ ∩ [#a = #b ∧ #b = #c]

◦ No associated automata model
→ conjectured link between RCM and deterministic
counter machines (RBCM)[Castiglione, Massazza ’17]
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Parikh automata (PA) [Klaedtke, Rueß ’03]

Motivation: {anbncn} is simple but not context-free

q1 q2 q3

C =

{(ℓ1
ℓ2
ℓ3

)
: ℓ1 = ℓ2 = ℓ3

}

a b c

b c

L(A) = a∗b+c+

◦ Run is labeled by a word

◦ Word is recognised if the run ends in final state q3

and if its
vector is in C

◦ Can be extended with a stack.
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Semilinear sets in Nd

The accepting set of vectors C is a semilinear set∧∨
of linear inequalities or equalities modulo constants

{(3n, 6n + 1) : n ∈ N} = {(x1, x2) : x1 ≡ 0[3] ∧ x2 = 2x1 + 1}

Equivalent definitions (all very useful!)

◦ Finite union of linear sets c⃗ + P∗ where P = {p1, . . . , pr}
(0, 1) + {(3, 6)}∗

◦ Presburger arithmetic [Ginsburg and Spanier, 66]
Φ(x1, x2) := ∃x , x1 − 3x = 0 ∧ 1 + 2x1 − x2 = 0

◦ (Unambiguous) rational subsets of (Nd ,+) [Eilenberg and
Schützenberger, Ito, 69]

0 1

(
0
1

) (
3
6

)
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(Weakly) unambiguous Parikh automata

Weak Unambiguity: at most one accepting run (final state +
semilinear constraint)

0 1 C = {(n, n) : n ∈ N}
a
(
0
0

)a, b
(
1
0

)
a, b

(
0
1

)

L(A) = {words with an a in the middle} = {. . . , abbabab, . . .}

̸= unambigous Parikh automata from [Cadilhac, Finkel, McKenzie 13]
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Relevant automata model

Theorem [Bostan, Carayol, K., Nicaud ’20] : The class of weakly
unambiguous Parikh languages coincide with :

◦ RCM of [Castiglione, Massazza ’17]

◦ unambiguous two-way RBCM [Ibarra ’78]

⇒ stronger version of [Castiglione, Massazza ’17]’s conjecture

Theorem [Bostan, Carayol, K., Nicaud ’20] : The class of weakly
unambiguous pushdown Parikh languages coincide with :

◦ LCL adapted from [Massazza ’93]

◦ unambiguous one-way RBCM with a stack [Ibarra ’78]
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Extension

weakly unambiguous
pushdown Parikh automata

unambiguous
pushdown automata

finite
automata

Automata model

L(z) =
∑

ℓnz
n

ℓn #words
of length n

D-finite

Generating functions

algebraic

rational

Theorem [Bostan, Carayol, K., Nicaud ’20] : The generating function
of a language recognized by a weakly unambiguous pushdown
Parikh automaton is D-finite.
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D-finiteness of the generating function

Theorem: the series of a weakly-unambiguous PA is D-finite

Counting the number of runs by vectors

A(x , y1, . . . , yd) =
∑

n,v1,...,vd

an,v1,...,vd x
ny v11 · · · y vdd is rational

0 1
a
(
0
0

)a, b
(
2
0

)
a, b

(
0
1

)

{
q0(x , y1, y2) = 2xy21q0(x , y1, y2) + xq1(x , y1, y2)

q1(x , y1, y2) = 2xy2 + 1

Support series of the semilinear constraint C

C (y1, . . . , yd) :=
∑

(v1,...,vd )∈C

y v11 . . . y vdd is rational

Filtering out non-accepting runs

A(x , y1, . . . , yd) ⊙
C (y1, . . . , yd)

1− x

weak-unambiguity ⇒ counting accepting runs = counting words □
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Extension

weakly unambiguous
pushdown Parikh automata

unambiguous
pushdown automata

finite
automata

Automata model

L(z) =
∑

ℓnz
n

ℓn #words
of length n

D-finite

Generating functions

algebraic

rational

Two remarkable applications :

◦ analytic proofs of inherent ambiguity for PA

◦ complexities bound for an algorithm for the inclusion problem
for wuPA
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Inherent ambiguity using non-holonomy

If the series of a language accepted by a PA is not D-finite, then it
is inherently weakly-ambiguous for PA.

Theorem [Stanley 1980]: Let f (x) =
∑

anx
n :

◦ If f has an infinite number of singularities, f is not D-finite.

◦ If an does not satisfy a linear recurrence with polynomial
coefficients, then f is not D-finite.

Example: the following language is recognized by a PA
D = {an1b an2b . . . ankb : k ∈ N∗, n1 = 1 and ∃j < k , nj+1 ̸= 2nj}
Observe that:

◦ w = aba2ba4ba8b is a typical word that is not in D
◦ D(x) = x2

1− x
1−x

−
∑

k≥1 x
2k−1+k

◦ D(x) has infinitely many singularities: it is not D-finite

Hence D is inherently weakly-ambiguous for PA.
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Limit of the method

Proposition: the following language is recognized by a PA

Leven = {an1b . . . an2kb : k ∈ N∗, ∃i ∈ [1, k], n2i−1 = n2i}
◦ actually it is an unambiguous context-free language

◦ its generating function is even rational!

◦ it is inherently weakly-ambiguous [Bostan, Carayol, K., Nicaud ’20]

Non-D-finiteness is only a sufficient condition for inherent
weak-unambiguity for PA

Proposition: inherent weak-unambiguity is undecidable.
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Algorithmic application: strict inclusion problem for wuPA

LB
LA

LC

Pose LC := LB \ LA
idea: replace LC

?
= ∅ by C (x)

?
= 0

◦ ”Compute” A(x) and B(x) from A and B
→ possible by weak-unambiguity

◦ Differential equation satisfied by C (x) = B(x)− A(x)

◦ Linear recurrence satisfied by cn = bn − an

−pr (n)cn+r = pr−1(n)cn+r−1 + . . .+ p0(n)cn

◦ Bound B such that cn = 0 for n ≤ B implies ∀n, cn = 0
C(x) = x100 satisfies xC ′(x)− 100C(x) = 0 and (n − 100)cn = 0
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Algorithmic application: inclusion problem for wuPA

Proposition [Bostan, Carayol, K., Nicaud ’20] :
If L(A) ⊊ L(B), then there exists a word w ∈ L(B)\L(A) such that

|w | ≤ 22
O(d2 log(dM))

with d = dA + dB, M depends on A and B.

Theorem [Bostan, Carayol, K., Nicaud ’20] :
The inclusion problem

L(A)
?
⊆ L(B)

is in 2− EXPTIME for weakly-unambiguous Parikh automata.
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Let us be more precise

pushdown PA
weakly-unambiguous

pushdown aut.
unambiguous

automata
(deterministic)

Automata model

L(z) =
∑

ℓnz
n

D-finite
series

Generating function

algebraic
series

rational
series

1−2x+225x2

(1−25x)(625x2+14x+1)
= 1+9x+49x2+. . . [Salomaa&Soittola 78, Bousquet-Mélou 08]

G (x) = 1+2x+11x2+. . . [Bostan & Kauers 10, Drmota & Banderier 13]
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Automata model

L(z) =
∑

ℓnz
n

N-D-finite
series ??

Generating function

N-algebraic
series

N-rational
series

1−2x+225x2

(1−25x)(625x2+14x+1)
= 1+9x+49x2+. . . [Salomaa&Soittola 78, Bousquet-Mélou 08]

G (x) = 1+2x+11x2+. . . [Bostan & Kauers 10, Drmota & Banderier 13]
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Let us be more precise

pushdown PA
weakly-unambiguous

pushdown aut.
unambiguous

automata
(deterministic)

Automata model

L(z) =
∑

ℓnz
n

∆(N-algebraic)
series

Generating function

N-algebraic
series

N-rational
series

Theorem [Koechlin ’21]: A series f (x) is the generating series of
a weakly-unambiguous (pushdown) Parikh automaton if and only if
it is the diagonal of an N-rational (N-algebraic) series



36/42

Diagonals of N-rational functions

◦ A multivariate series

A(x1, . . . , xk) =
∑
i1,...,ik

ℓi1,...,ikx
i1
1 . . . x ikk

is N-rational if it counts the number of accepting runs of a
finite automaton over the alphabet Σ = {a1, . . . , ak}, where
each variable counts the number of occurrences of each letter
in the run.

◦ The diagonal of A(x1, . . . , xk) is the univariate function
defined by

∆A(x) =
∑
n

ℓn,...,nx
n

→ Diagonals of N-rational series ≃ generating functions of
regular languages with constraint ”same number of
occurrences of each letter”
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wuPA implies diagonal of N-rational functions

1

2

3

a,

(
1
2

)
c,

(
1
2

)

b,

(
0
12

) a,

(
1
0

)

a,

(
1
2

)

ϕ(x1, x2) = (x1 = 2x2)

. . .

. . .

. . .
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wuPA implies diagonal of N-rational functions

. . .

. . .

. . .
1

2

3

δ1,

(
1
2

)
δ5,

(
1
2

)

δ2,

(
0
12

) δ3,

(
1
0

)

δ4,

(
1
2

)

ϕ(x1, x2) = (x1 = 2x2)

1

2

3
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wuPA implies diagonal of N-rational functions

n mδi =

δi,

(
1
3

)

n m

δi, e⃗i

ϕ(x1, x2) = (x1 = 2x2) ∑
i vi,1yi = 2

∑
i vi,2yi

ϕ′(y1, . . . , yr) =

”Replace x1 by . . . + yi + . . .

and x2 by . . . + 3yi + . . .”

e⃗i = (0, · · · , 0, 1, 0, · · · , 0)
i
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wuPA implies diagonal of N-rational functions

1

2

3

δ1, e⃗1 δ5, e⃗5

δ2, e⃗2

δ3, e⃗3

δ4, e⃗4

ϕ′(y1, . . . , yr)

. . .

. . .

. . .
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wuPA implies diagonal of N-rational functions

1

2

3

δ1, e⃗1 δ5, e⃗5

δ2, e⃗2

δ3, e⃗3

δ4, e⃗4

. . .

. . .

. . .

A
B

C
D

. . .

e⃗2

e⃗2

e⃗1

e⃗2e⃗1

e⃗3

e⃗3
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wuPA implies diagonal of N-rational functions

n m

δi, e⃗i

ϕ′(y1, . . . , yr)

A B

e⃗j n,A m,B

δi, (e⃗i; e⃗j)

Φ(y1, . . . , yr; z1, . . . , zr)

= (y1 = z1 ∧ . . . ∧ yr = zr)
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wuPA implies diagonal of N-rational functions

n m

δi, e⃗i

ϕ′(y1, . . . , yr)

A B

e⃗j n,A m,B

δi, 1⃗ + e⃗i − e⃗j

Φ(y1, . . . , yr)

= (y1 = . . . = yr)
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wuPA implies diagonal of N-rational functions

x

z

δi, 1⃗ + e⃗i − e⃗j

δk, 1⃗ + e⃗k − e⃗j

Φ(y1, . . . , yr) = (y1 = y2 = . . . = yr−1 = yr)

y

δj, 1⃗

. . .

δi, 1⃗ + e⃗i − e⃗k

. . .
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wuPA implies diagonal of N-rational functions

x

z

wi,j

wk,j

y

w = δ1 . . . δr

. . .

wi,k
. . .

L(x) = ∆A(y1, . . . , yr)

wi,j = δ1 . . . δi−1δ
2
i . . . δj−1δj+1 . . . δr

A =
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Diagonals of N-rational functions
Irrational tiles [Garrabrant and Pak]

◦ set of tiles with height 1, with possible irrational length

◦ overlapping compatibility

[Garrabrant and Pak] L(x) =
∑

n ℓnx
n is the diagonal of an N-rational

function if and only if there is a set of tiles and some ε > 0 such
that ℓn = number of tilings of the rectangle of length n + ε.

n + ε
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Diagonals of N-rational functions

1 2

δi, 1⃗ + e⃗i − e⃗j
1 2

i

1 + αi − αj

where 1, α1, . . . , αr independent over Q
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Conclusion

pushdown PA
weakly-unambiguous

pushdown aut.
unambiguous

automata
(deterministic)

Automata model

L(z) =
∑

ℓnz
n

diagonal of
N-algebraic series

Generating functions

N-algebraic
series

N-rational
series

◦ more precise but less useful? Not enough closure properties

◦ diagonals of N-rational series are not well understood
Conjecture: Catalan’s numbers are not diagonal of N-rational
series [Garrabrant and Pak ’14]



40/42

Conclusion THANK YOU !

pushdown PA
weakly-unambiguous

pushdown aut.
unambiguous

automata
(deterministic)

Automata model

L(z) =
∑

ℓnz
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diagonal of
N-algebraic series
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N-algebraic
series

N-rational
series
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◦ diagonals of N-rational series are not well understood
Conjecture: Catalan’s numbers are not diagonal of N-rational
series [Garrabrant and Pak ’14]
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Bonus Analytic criteria for inherent ambiguity V2

Proposition
Ω4 = {w ∈ {a, b, c , d}∗ : ¬(|w |a = |w |b = |w |c = |w |d)} is
inherently ambiguous.

Analytic proof:

◦ Suppose that Ω4(x) is algebraic

◦ Let I = (a+ b + c + d)∗ \ Ω4

◦ But I = {w ∈ {a, b, c, d}∗ : |w |a = |w |b = |w |c = |w |d}

[x4n]I (x) =

(
4n

n, n, n, n

)
=

(4n)!

(n!)4
∼n→∞

√
2

2π3/2

256n

n3/2

But Γ(−3/2 + 1)
√
2

2π3/2 = −
√
2

π is transcendent!

◦ Lazy proof: Ω4 ∩ (a+ b + (cd))∗ ≃ Ω3.
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More specific criteria on series (2)

Motivation: there exist many inherently ambiguous languages
with very simple (rational !) series.

The language {anbmcp with n ̸= m or m ̸= p} is inherently
ambiguous [Makarov 21, Koechlin 21]

1
(1−a)(1−b)(1−c) −

1
1−abc = a+b+c−ab−ac−bc

(1−a)(1−b)(1−c)(1−abc)

The language

Leven = {an1b . . . an2kb : k ∈ N∗, ∃i ∈ [1, k], n2i−1 = n2i}

is inherently weakly-ambiguous for PA.
→ proof based on generating functions ?


