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differential
operator
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Albenque/Ménard/Schaeffer, Banderier/Flajolet, Bousquet-Mélou/Jéhanne, Temperley, Tutte, Zeilberger, [

ger, [...]
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(Properties of Gu?) ~» asymptotics of G,

Algebraicity result ( )
There exists a non-zero bivariate polynomial & s. t. &/ (G,, t) = 0.
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Algebraicity result ( )
There exists a non-zero bivariate polynomial & s. t. &/ (G,, t) = 0.
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Functional equations and polynomials

_Gu= U +1t2 (Gu,dg”c,,,...,dgk)(;u,t, u) with % € Q[u] and
2¢e Q[’Y?dlw"vékvta u]
(Properties of Gu?) ~» asymptotics of G, Compute /7

Quantitative

aspects?

Algebraicity result ( )
There exists a non-zero bivariate polynomial & s. t. &/ (G,, t) = 0.

Gu = Loy (u— @)i~tgi~r dV G, = Gempi=li-dp—o—(e-a) 'y

u—a

B P (Gyy g1y -8k t,u) =0 with & € Q[r, 71, .-+, Yk, t, U]

S X

@ differentiate w.rt. u~» 99292 (g) 4 92 () = 0
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We have & (G, g1, -, 8k, 1, u) = 0 with & € Q[k, V1, -+, Vi 1, Y]
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Functional equations and polynomial systems (lI)

We have & (G, g1, -, 8k, 1, u) = 0 with & € Q[k, V1, -+, Vi 1, Y]
—_———

S X
@ differentiate w.r.t. u~ 88(;“ 92 (S)+9Z(S) =0
If 3U,, ... ., U distinct fractional power series in ¢ such that 22 (S(U;)) = 0 then
& (Hlalv L ul) 0o (fiz,l, £, Uz) =0 97 (Hk,l, £, uk) =0
% (/“"1717 £ ul) =0 % (5‘277) t; Mz) =0 --.... 882 (Hk,")/, L, Uk) =0
%(l{,l,l,t,ul) 0 %—‘@(hz,f}/,t uz) =0 T@(h/\,’y,t uk) =0

these 3k equations involving k 4+ 2k + 1 indeterminates fully determine the U;’s

(under some transversality conditions)



Functional equations and polynomial systems (lI)

We have & (G, g1, -, 8k, 1, u) = 0 with & € Q[k, V1, -+, Vi 1, Y]
—_———

S X
EuiZ (5)+ %2 (5)=0
If 30y, . . ., U distinct fractional power series in ¢ such that % (S(U;)) = 0 then
& (M»l, £, ul) 0o (f'fz,l» L, Uz) =0 97 (h',k,’y,t uk) =0
G (moytu) =0 GF(kytw) =0 oo 92 (k7 t ) =0
%(Hl,l,t,ul) 0 %—‘@(hz,f}/,t uz) =0 T@(h/\,’y,t uk) =0

these 3k equations involving k 4+ 2k + 1 indeterminates fully determine the U;’s

(under some transversality conditions)

= All unknown series are algebraic
v These distinct series do exist
v/ fixed-point type equation = & such that &/(G,,t) = o/ (71 = G,,t) =0
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Dimension number of degrees of freedom one can move on the solution set
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Geometry of the problem (I)

Dimension number of degrees of freedom one can move on the solution set

=k+1 K = Q(1)

1 dim (Zeroes (22,92, 92)) = k—1  expectedly

P eQ(t)[kyY1y--- Tk U] ~ dim (Zeroes( 2, K)
~——
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@ For which set of values g of v, are
there k distinct u-coordinate solutions to

P(k,g,u) = %(K,k‘, u) = %(m,g; u) = 0?




Geometry of the problem (1)

Dimension number of degrees of freedom one can move on the solution set

P e Qt)[kyY1y-- ks U] ~ dim (Zeroes(Z,K)) = k+ 1 K = Q(1)
———
1 dim (Zeroes (22,92, 92)) = k—1  expectedly
@ For which set of values g of -, are (Duplicate variables)

there k distinct u-coordinate solutions to
9(,{7 3‘7 u) — %(’i7 k‘? u) — M(K7 g'; u) = 0?

ok u

(Geometric methods)
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@ For which set of values of ~,
are there k distinct u-coordinate solutions to

'O}(Kvgv u) = %(ﬁgv u) = %(Kvgv u) =




Geometry of the problem (1)

@ For which set of values g = (g;. ..., gk) of 7,
are there k distinct u-coordinate solutions to

'@(K7g7 u) = %(’ﬁgv u) = %(’ﬁg, u) =07

Take 3 linear equations in Q[x, 7,
gl = Qz = e@3 =0

generically no solution
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91 =92,=9:=0 Univariate polynomial in ~;

generically no solution
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are there k distinct u-coordinate solutions to
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Take 3 linear equations in Q[k, 71, 4] | determinantal formulation

91 =92,=9:=0 Univariate polynomial in ~;

generically no solution
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Solution set is a curve



Geometry of the problem (1)

@ For which set of values g = (g;. ..., gk) of s
are there k distinct u-coordinate solutions to

'@(K7g7 u) = %(’ﬁga u) = %(’ﬁg, u) =07

Take 3 linear equations in Q[k, 71, 4] | determinantal formulation

91 =92,=9:=0 Univariate polynomial in ~;

generically no solution

i-ytEqu—r = -1=0

Solution set is a curve



Geometry of the problem (1)

@ For which set of values of

>

are there k distinct u-coordinate solutions to

'O}(Kvgv u) = %(ﬁgv u) = %(Kvgv u) =

Take 3 linear equations in Q[k, 71, 4] | determinantal formulation

D =2,=2;=0 Univariate polynomial in
generically no solution

Solution set is a curve

These subsets are exceptional




Direct solving — Grobner bases

Z (’{1717 £ ul) =0 & (H’Zal, £ UZ) =0 & (H’/ﬁl? £ uk) =0
% (tha t7 ul) =0 % (/‘fZal, ta 142) =0 coooos v (Hk7la t7 Ltk) =0
=9 22 £l (Hk,l, it uk) =0

92 (o) =0 92 (v tw) =0

Ju



Direct solving — Grobner bases

K4 (h‘,l,"}/, ul) EX (h‘z,"}/, uz) =0 P (Hk,l, uk) =0
%@ (’L‘177a M]) =0 %iz (’L‘ZafYa ul) =@ cocooos %ﬁ (Hkuly7 uk) =0
& (knym) =0 G2 (ke,3,w) =0 & (k) =0
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K4 (f’{l,")/, ul) EX (f{z,l, uz) =0 K (h‘k,l, uk) =0
%52 (h177a M]) =0 %(H’Zala u2) =0 ---.-- 36% (Hkulv uk) =0
%ﬁ(hla’y, ul) =0 %ﬂ(hb'ya uZ) =0 % (H’kal7 uk) =0

Completion mechanism to discover hidden relations




Direct solving — Grobner bases

K4 (f’{l,l, ul) EX (f{z,l, uz) =0 K (h‘k,l, uk) =0
% (’L‘/"'hl; M]) =0 % (H'Zala u2) =0 ---.-- 36% (Hkulv uk) =0
% (Huj, Ul) =0 % (Hz,j, uz) =0 % (h:k,l, uk) =0

Completion mechanism to discover hidden relations

M2 —7’=0
Yu—7, =0
w—1=0
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K4 (f’{l,")/, ul) EX (f{z,l, uz) =0 K (h‘k,l, uk) =0
%52 (h177a M]) =0 %(H’Zala u2) =0 ---.-- 36% (Hkulv uk) =0
%ﬁ(hla’y, ul) =0 %ﬂ(hb'ya uZ) =0 % (H’kal7 uk) =0

Completion mechanism to discover hidden relations

k=1 Ky =1

T =7’ =0 M =7 =0
Yiug — Y2 =0 Yiuz — Y2 =0
w?—1=0 u?—1=0



Direct solving — Grobner bases

K4 (f’{l,l, ul) EX (f{z,l, uz) =0 K (h‘k,l, uk) =0
92 (kv wm) =0 22 (ky,y,u) =0 -o--o 82 (g, v, u) =
% (Huj, Ul) =0 % (Hz,j, uz) =0 % (h:k,l, uk) =0

Completion mechanism to discover hidden relations

k=1 Ky =
2 2 _ 2 2
N =7 =0 YT =" =0

w?—1=0 w?—1=0



Direct solving — Grobner bases

K4 (f’{l,l, ul) EX (f{z,l, uz) =0 K (h‘k,l, uk) =0
% (’L‘/"'hl; M]) =0 % (’L"Zala ul) =0 ---.-- 36% (Hkulv uk) =0
% (Huj, Ul) =0 % (Hz,j, uz) =0 % (h:k,l, uk) =0

Completion mechanism to discover hidden relations

k=1 Ky =
2 2 _ 2 2 _
Y= =0 YT =" =0

w?—1=0 w2 —1=0

Tith — Y2 = 0= Y1thp — Y2ty =0
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K4 (f’{l,l, ul) EX (f{z,l, uz) =0 K (h‘k,l, uk) =0
% (’L‘/"'hl; M]) =0 % (H'Zala u2) =0 ---.-- 36% (Hkulv uk) =0
% (Huj, Ul) =0 % (Hz,j, uz) =0 % (h:k,l, uk) =0

Completion mechanism to discover hidden relations
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72 =7’ =0 Y2 =7’ =0
’7’1“1*’72:0‘ ‘71”2*%20
w?—1=0 w?—1=0
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K4 (f’{l,l, ul) EX (f{z,l, uz) =0 K (h‘k,l, uk) =0
%(H’hl; M]) =0 %(’L‘Zala ul) =0 ---.-- 36% (Hkulv uk) =0
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Direct solving — Grobner bases

K4 (f’{l,l, ul) EX (f{z,l, uz) =0 K (h‘k,l, uk) =0
%(H’hl; M]) =0 %(’L‘Zala ul) =0 ---.-- 36% (Hkulv uk) =0
% (Huj, Ul) =0 % (Hz,j, uz) =0 % (h:k,l, uk) =0

Tith — Y2 = 0= M1ty — Yoy =0
2= Yt — Y2 =0 = Y1t — Yoy =0
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Direct solving — Grobner bases

K4 (f’{l,l, ul) EX (f{z,l, uz) =0 K (h‘k,l, uk) =0
%(H’hl; M]) =0 %(’L‘Za,ya ul) =0 ---.-- 3@% (Hkulv uk) =0
% (Huj, ul) =0 % (Hz,j, uz) =0 % (h:k,l, uk) =0

Completion mechanism to discover hidden relations

Tith — Y2 = 0= M1ty — Yoy =0

k=1 Ky =1
Y2 —7E=0 Y —7E=0 Yty — Y2 =0 = Yithtl — Y2y =0
‘71“1*’72:0‘ "sz*%:()‘ = Yol — Yoth =0
w?—1=0 w?—1=0 = Pn=7=0
non-zero #(n) l Projection l
elements 2 (1 72) 1

Reductions G (Viye oy VE) 4
Rewriting linear algebra Dy (V155 Vi 1) ' Elimination l

rules




Computing Grobner bases

preconditioning (—w change of order
. degree order 'M g GBLEX

lexicographic



Computing Grobner bases

@ preconditioning - change of order @
> > LEX
degree order lexicographic



Computing Grobner bases

@ preconditioning (GB ) change of order -
degree order Vﬂj ’
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Computing Grobner bases

preconditioning GB change of order
f ~ GBgrevtex - GBrex|
degree order lexicographic



Computing Grobner bases

preconditioning GB change of order
f ~ GBgrevtex - GBrex|
degree order lexicographic

Bases of
(qu seceg qs) — 23:1 qlfl

deg(qifi) < B
Macaulay map



Computing Grobner bases

preconditioning (F change of order
f - grevlex
degree order lexicographic
Characteristic polynomial

B f . q q o
(4 qa)seiozs o Algorithms and termination criteria
1y+-+59s i=1 1iJi q . .
deg(qf) < P Generating (Hilbert) series of
Macaulay map Macaulay maps + sparsity

Complexity in the generic case




Computing Grobner bases

preconditioning (F change of order
f - grevlex
degree order lexicographic
Characteristic polynomial

B f . q q o
(4 qa)seiozs o Algorithms and termination criteria
1y+-+59s i=1 1iJi q . .
deg(qf) < P Generating (Hilbert) series of
Macaulay map Macaulay maps + sparsity

Complexity in the generic case

[Generic case ~ O (("Jr?“"g)w 4 (ﬁsols)w) ]




Quantitative aspects

n variables, degree d

fi=lix x-- x4l b = U e T 0} solutions

1<i<n 1


https://msolve.lip6.fr
https://github.com/algebraic-solving/msolve

Quantitative aspects

n variables, degree d

fi=liax---xXVlig by == by, =0} solutions

1<i<n 1§jk§d

Degree

Take V C C" an algebraic set of dimension m.

number of intersection points of V with m generic hyperplanes
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Quantitative aspects

n variables, degree d

fi=liax---xXVlig by == by, =0} solutions

1<i<n 1§jk§d

Degree |Take V C C" an algebraic set of dimension m.

number of intersection points of V with m generic hyperplanes

Degree 2
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Quantitative aspects

n variables, degree d

fi=liax---xXVlig by == by, =0} solutions

1<i<n 1§jk§d

Degree |Take V C C" an algebraic set of dimension m.

number of intersection points of V with m generic hyperplanes

c
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Quantitative aspects

n variables, degree d

fi=lix x-- x4l b = =luj, =0} solutions

1<i<n 1§jk§d

Degree |Take V C C" an algebraic set of dimension m.

number of intersection points of V with m generic hyperplanes

Bézout theorem
deg(VN W) < deg(V) x deg(W)
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Quantitative aspects

n variables, degree d

fi=lix x-- x4l b = =luj, =0} solutions

1<i<n 1§jk§d

Degree

= Duplication
Q Bézout theorem

Take V C C" an algebraic set of dimension m.

number of intersection points of V with m generic hyperplanes

deg(V N W) < deg(V) x deg(W) | Z = Zeroes (2, %2, %7)
deg(Z x -+ x Z) < deg(Z)*
N’

k times
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Quantitative aspects

n variables, degree d
fi=liix - xliyg = =tn;, =0} solutions
1<i<n 1 S]k < d

Degree |Take V C C" an algebraic set of dimension m.

i

number of intersection points of V with m generic hyperplanes

= Duplication
Q Bézout theorem

deg(VN W) < deg(V) x deg(W) | Z=Zeroes (2,57, 57)
deg(Z x -+ x Z) < deg(Z)*
== — =

k times

plain C library Berthomieu, Eder, Neiger, S.
SORBONNE
UNIVERSITE ~ 55 000 lines, license GPLv2+
uses GMP and FLINT
https://msolve.lip6.fr

’ https://github.com/algebraic-solving/msolve
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Quantitative aspects

20

—+—msolve (solve)
—+— msolveGB
-eo- maple GB

: [ ]
Q SORBONNE I
b UNIVERSITE

RPTU

plain C library Berthomieu, Eder, Neiger, S.
~ 55 000 lines, license GPLv2+

uses GMP and FLINT
https://msolve.lip6.fr

’ https://github.com/algebraic-solving/msolve



https://msolve.lip6.fr
https://github.com/algebraic-solving/msolve

Quantitative aspects

20

—+—msolve (solve)
—+— msolveGB
-eo- maple GB

Guideline. Compute only what you need(!)

: [ ]
Q SORBONNE I
b UNIVERSITE

RPTU

plain C library Berthomieu, Eder, Neiger, S.
~ 55 000 lines, license GPLv2+

uses GMP and FLINT
https://msolve.lip6.fr

’ https://github.com/algebraic-solving/msolve
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Quantitative aspects

20

—+—msolve (solve)
—+— msolveGB
-eo- maple GB

Guideline. Compute only what you need(!)

State-of-the-art handles
0-dimensional systems
of degree ~ 10 000

: [ ]
Q SORBONNE I
b UNIVERSITE

RPTU

plain C library Berthomieu, Eder, Neiger, S.
~ 55 000 lines, license GPLv2+

uses GMP and FLINT
https://msolve.lip6.fr

’ https://github.com/algebraic-solving/msolve
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https://github.com/algebraic-solving/msolve
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Degree bounds & complexity

There exists a non-zero bivariate polynomial </ s. t. &/(G,,t) = 0.

( )

Let 9 be the degree of &. Then, the degree of <7 is dominated by Oki,k

One can compute .27 using

_ 1.89k
16) <6"k <k2 + 653 4+ o 7 ))

arithmetic operations.
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K =1

Almost the projection on the
(71,72, u)-space
Extra “hidden” condition:
Y2 # 0,71 #0

[t’" leading coefficients = 0 ]

Theorems

The Elimination and Extension

Grobner Triangular

Ideals,
Varieties, and
Algorithms

bases system

Control on the cardinality of fibers
counted with multiplicities




Geometric method and root counting

1 M1
— Take f € K[u] of degree d
The univariate case | roots {1 i} =
1505 Md
1 N, - N,
N N Ny

Vv =

Ni1 Ni -+ Nog o

d—
T

o



Geometric method and root counting

1 Hq
— Take f € K[u] of degree d
|The univariate case | =
roots {f1, ..., fa}
1 pa e py
LN N
7
NN Ny Ni=2iei 1y
VIV = ) . . polynomials in
5 g 0 : the coefficients of f
Ni—1 Ng -+ Npg_s



Geometric method and root counting

1 My
— Take f € K[u] of degree d
|The univariate case | =
roots {f1, ..., fa}
1opa e gt
LN N
7
NN Ny Ni =3
VIV = ) . . polynomials in
5 g 0 : the coefficients of f
Ni—1 Ng -+ Nag—

Pr=--=P,=0 o T
T , Multivariate generalization
[ The multivariate case|  in Q)% % i :
defining a 0-dimensional set of Hermite matrices




Conclusions and perspectives

DDESolver Maple package written by

‘ https://github. com/HNotarantonio/ddesolver‘

Example k ‘ time(dupl) time(geo)
triangulation 2 55 secs 1 min. 10 secs
4-constellations | 3 4 min. 41 secs.
4-tamari 3 2d. 2h. 6 min.
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DDESolver Maple package written by

‘ https://github. com/HNotarantonio/ddesolver‘

Example k ‘ time(dupl) time(geo)
triangulation 2 55 secs 1 min. 10 secs
4-constellations | 3 4 min. 41 secs.
4-tamari 3 2d. 2h. 6 min.

@ Not covered by this talk. Combining guessing approaches with polynomial
systems solvers
@ Singularities of series depending with coefficients depending on a parameter

@ Better algorithms for algebraic elimination?

~> Critical point structure of & = % = % =0
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